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1. INTRODUCTION 

This paper describes a national trip end model to forecast demand for new local railway 
stations in Great Britain, which has been implemented as an automated tool hosted on 
the Data and Analytics Facility for National Infrastructure (DAFNI). It represents 
continuing progress in the development of a national trip end model by researchers at 
the University of Southampton’s Transportation Research Group (TRG) over recent 
years. 

The number of rail passenger journeys is expected to increase by up to 40% by 2040 
(Network Rail, 2018), and the UK Government has recently set out an ambition of 
‘reversing the historic contraction of the rail network’ with an emphasis on new local 
connections and stations that support housing development or economic growth, or 
that address urban congestion (Department for Transport, 2017). There will, therefore, 
be a continuing need to assess proposals for new railway stations and lines. A crucial 
part of this evaluation process is to obtain accurate demand forecasts, as predicted 
station patronage is a key driver of the benefits that will determine whether a scheme is 
considered viable. 

Trip rate or trip end models1 are the most common type of model used to forecast 
demand for new railway stations in GB. They were used in 10 of the 18 schemes 
reviewed in a report commissioned by the Department for Transport (DfT) to investigate 
the accuracy of recent station demand forecasts (Steer Davies Gleave, 2010). In only 
three of these cases was observed demand within 20% of the forecast, with examples of 
substantial under- or over-prediction. For example, observed demand was 2.65 times 
higher than forecast for Glasshoughton and less than half that expected at Aylesbury 
Vale Parkway. More recently, the appraisal for the new Borders Railway line severely 
under-forecast demand at the three Borders stations, with actual demand up to eight 
times higher than forecast in the first 12 months of operation (Transport Scotland, 
2017). The models are typically developed and applied on a local basis by the 
consultants commissioned to evaluate a proposed scheme, reflecting guidance from the 



DfT (Department for Transport, 2011) and the rail industry (Association of Train 
Operating Companies, 2013), which both consider the appraisal of a new station to be a 
special case requiring a bespoke model. However, as these models are specific to a local 
context they may not have been rigorously evaluated and it can be difficult to know 
what confidence to have in the demand forecasts that they generate. 

Previous work at TRG has successfully calibrated national trip end models suitable for 
general application in forecasting demand for new local rail stations in England and 
Wales (for example, see Blainey, 2010). However, a potential weakness of this previous 
work is the use of a simplistic catchment definition to calculate the population from 
which trips will be generated. This typically involves dividing the study area into zones 
and assigning each zone to its nearest station. For example, Blainey (2010) used census 
output areas, and the scheme appraisal for Mitcham Eastfields station, which opened in 
2008, used census enumeration districts. This method produces discrete non-
overlapping catchments which imply that station choice is a deterministic process 
(everybody beginning a trip from within a zone is assumed to board at the same station) 
and that stations do not compete for passengers. However, real station catchments are 
far more complex entities, and the failure to account for this could be a contributory 
factor in the poor performance of models used to appraise some recent schemes. If 
station catchments are not adequately defined, then inappropriate weight will be given 
to other explanatory variables in the model, such as service quality measures, as drivers 
of trip generation, rather than the catchment population. This can result in less robust 
models that have poor geographic transferability — an important consideration when 
the aim is to develop a nationally applicable model (Wardman & Whelan, 1999). To 
address this concern, a novel aspect of the trip end model described in this paper is the 
use of probabilistic station catchments defined using a station choice model. 

The national trip end model is intended to be used during the appraisal of local rail 
schemes for new stations or new lines, or where a non-incremental change to services 
at an existing station or stations is proposed. It can be used during the early assessment 
of different options and as part of a sifting process, providing a forecast of trips for each 
option, potentially alongside an analysis of abstraction from existing stations. For later 
appraisal stages, the forecast can form a key input to the cost benefit analysis, enabling 
the change in train operator revenue to be estimated. Crucially, the ability to generate 
probabilistic station catchments that capture competition between stations allows an 
estimate of abstraction from existing stations to be made. The model reduces the need 
to design and implement local modelling solutions which will inevitably vary in 
approach, robustness and performance. Even if a bespoke local model was considered 
desirable, this national model could act as a useful sense-check of the demand forecast 
it generated. 



2. THE MODEL 

2.1 Station Choice Component 

A multinomial logit (MNL) model was calibrated using observed choice data from origin-
destination passenger surveys carried out in 2014 and 2015, which were obtained from 
the Welsh Government and Transport Scotland. Several novel techniques were 
developed to validate these datasets and maximise their usefulness. These included the 
estimation of trip origins from incomplete address information, and the automated 
identification of illogical trips. The cleaned dataset consisted of 14,422 choice situations. 
The choice set for each observation was specified as the ten nearest stations to the 
origin postcode. Predictor variables were derived from open transport data sources, and 
a processing framework based around OpenTripPlanner, R and PostgreSQL was 
implemented to manipulate the large amount of data in a reproducible manner (Young, 
2016). An API wrapper was written to query OTP and parse the planner response (now 
available as the R package otpr on CRAN). The model selected for incorporation in the 
subsequent trip end model calibration had an adjusted R2 of 0.71 and a predictive 
performance measure of 24.9% (where closer to zero is better2). The model performed 
considerable better than a comparator model (42.2%), where the nearest station to the 
trip origin was assumed be chosen (replicating the deterministic approach). The utility 
function of the model, for individual n at origin i choosing station k is as follows: 

𝑉𝑛𝑖𝑘 = exp(𝛽𝑁𝑘 + 𝛾√𝐷𝑖𝑘 + 𝛿𝑈𝑘 + 𝜖ln𝐹𝑘 + 𝜁𝐶𝑘 + 𝜂𝑃𝑠𝑘 + 𝜃𝑇𝑘 + 𝜄𝐵𝑘), 

where 𝐷 is the access distance by road from origin 𝑖 to station 𝑘; 𝐹 is the daily service 
frequency at station k; 𝑃𝑠 is the number of car parking spaces at station 𝑘; 𝑁, 𝑈, 𝐶, 𝑇 
and 𝐵 are dummy variables that take the value of 1 if station 𝑖 is the nearest station, 
unstaffed, has CCTV, has a ticket machine, or has a bus interchange respectively, and 
zero otherwise; and 𝛽, 𝛾, 𝛿, 𝜖, 𝜁, 𝜂, 𝜃, and 𝜄 are the estimated parameters. A summary 
of the calibration result for this model is shown in Table 1. 

Table 1 Summary of calibration result for the station choice model. 

Variable 𝛽 𝑧 𝑠𝑖𝑔 

Nearest by distance 0.691 18.4 *** 
Sqrt(distance) -2.262 -56.3 *** 

Category F station (small, unstaffed) -0.677 -16.0 *** 
Ln(service frequency) 1.199 34.6 *** 

CCTV 1.071 8.6 *** 
Car parking spaces (#) 0.001 16.5 *** 

Ticket machine 0.984 19.1 *** 
Bus interchange 0.758 13.6 *** 

    
Sample size 14422   

Initial log-likelihood3 -33025   
Final log-likelihood -9651   

McFadden's adjusted R2 0.71   



To assess the likely predictive accuracy of the model on new data, a 10-fold cross-
validation repeated 10 times was carried out. The average predictive performance 
measure of all repeats was 28.6%, representing only a small reduction in model 
predictive performance of 3.7 percentage points compared to the in-sample 
assessment. There was also very low variance in the average predictive performance 
measure between repeats (maximum difference of 0.4), indicating a high level of model 
stability. An example visualisation of a probabilistic catchment generated using the 
model is shown in Figure 1. For more information about calibration of the station choice 
model see Young & Blainey (2018) and Young (2019). 

 

Figure 1 Deterministic and probabilistic catchments for Tweedbank station. 

 

2.2 Trip End Model 

The starting point for the trip end model calibration was a model developed during 
previous work by Blainey & Preston (2013) and Blainey (2017), where deterministic 
catchments were defined by assigning the population of census output areas to their 
nearest station. This model was modified to use the postcode as the zonal unit4, with 
the population of each postcode distributed to each station in its choice set, in 
proportion to the probability of each station being chosen. The form of the model is 
shown below: 

ln �̂�𝑖 = 𝛼 + 𝛽(ln ∑ 𝑃𝑟𝑧𝑖
𝑍
𝑧 𝑃𝑧𝑤𝑧𝑖) + 𝛾ln𝐹𝑖 + 𝛿ln𝐽𝑖𝑡 + 𝜖ln𝑃𝑠𝑖 + 𝜁𝑇𝑒𝑖 + 𝜂𝐸𝑙𝑖 + 𝜃𝐵𝑖, 



where �̂�𝑖 is the estimated annual passenger entries and exits for station 𝑖; 𝑃𝑟𝑧𝑖 is the 
probability of someone located in postcode 𝑧 choosing station 𝑖; 𝑍 consists of all 
postcodes which have station 𝑖 within their choice set; 𝑤𝑧 is a two-stage distance decay 
function; 𝐹𝑖  is weekday train frequency at station 𝑖; 𝐽𝑖𝑡 is the number of jobs within 𝑡 
minutes drive of station 𝑖, 𝑃𝑠𝑖 is the number of parking spaces at station 𝑖, and 𝑇𝑒𝑖, 𝐸𝑙𝑖 
and 𝐵𝑖 are dummy variables that take the value of 1 if station 𝑖 is a terminus station, 
served by electric trains or a travelcard boundary station respectively, and zero 
otherwise; and 𝛼, 𝛽, 𝛾, 𝛿, 𝜖, 𝜁, 𝜂, and 𝜃 are the estimated parameters. 

In line with the earlier work, the calibration dataset is defined as the majority of 
category E and F stations5

 in Great Britain, and the dependent variable is the total 
number of station entries and exits in 2011/12 as reported by the Office of Rail and 
Road (2013). To generate the bracketed part of the equation, which represents the 
catchment definition, choice sets were constructed for every postcode in mainland GB 
(some 1.5 million), consisting of the ten nearest stations to each. The associated choice 
probabilities were then calculated using the station choice model discussed above. A 
summary of the calibration result for the trip end model selected for the automated 
implementation on DAFNI is shown in Table 2. 

Table 2 Summary of calibration result for the trip end model. 

Variable 𝛽 𝑧 𝑠𝑖𝑔 

Intercept 3.67 38.5 *** 

ln(population) 0.37 20.14 *** 

ln(daily train frequency) 1.14 41.47 *** 

ln(work population within 1 minutes’ drive) 0.05 7.75 *** 

ln(car park spaces) 0.13 14.14 *** 

Electric services 0.24 5.93 *** 

Travelcard boundary 0.30 3.29 ** 

Terminus station 0.78 9.37 *** 

    

McFadden's adjusted R2 0.85   

Mean Squared Error (MSE) 0.48   

The model was found to perform better, in terms of adjusted R2 and AIC, than a 
comparative model with deterministic catchments (postcode population assigned to 
nearest station). Importantly, greater weight was given to the population variable and 
reduced weight was given to variables related to station services and characteristics. 
This indicates that the more realistic representation of the catchment enables 
differences in the number of trips to be better explained through the population 
variable. Consequently, the model should be more transferable and better suited for use 
as a national predictive model. To identify any potential systematic bias in the model at 



regional level, the standardised residual for each station was plotted on a map of GB, as 
shown in Figure 2.  

In this map the radius of each point is proportional to the size of the residual (note that 
the points for stations with very small residuals are not visible at this scale). Overall, the 
map shows that under-prediction and over-prediction occurs in all regions of the 
country and is present at a range of magnitudes. This suggests that the model performs 
similarly across the country, with no obvious regions where the model systematically 
under- or over- predicts station demand, and no regions where the standardised 
residuals appear systematically larger than in others. There is perhaps a tendency for 
under-prediction to dominate in the Greater London area. This would be expected given 
that there is no realistic alternative to public transport modes for travelling to/from 
central London and there is no variable that captures this additional generation effect in 
the model. 

The likely predictive accuracy of the model on new data was assessed using a 10-fold 
cross-validation, repeated ten times. The average estimate of mean squared error (MSE) 
across all ten repeats was only marginally higher (0.003) than the internal MSE, 
suggesting that the model's predictive validity will hold when applied to new data. There 
was only a small variance in the cross-validation estimate across the repeats (maximum 
0.002), indicating that the model has high stability. 



 

Figure 2 Standardised residuals for each station plotted on a map of GB. The radius of 
each point is proportional to the size of the residual with positive residuals (model 
under-prediction) shown in blue and negative residuals (model over-prediction) shown 
in red. 

2.3 Evaluation 

The model’s predictive performance has been assessed for ten recently opened stations, 
including seven on a newly built railway line. For all but three stations, the model 
produced a more accurate forecast than the comparator model with deterministic 
catchments, highlighting the potential importance of using a trip end model that better 
represents real-life station catchments. The model also performed well when compared 
to the official forecasts produced during scheme appraisals, particularly for stations on 
the new Borders Railway line. The results of the evaluation are given in Table 3 and 
summarised in Figure 3. 



Table 3 Demand forecasts for 10 recently opened stations and comparison with 
scheme forecasts and actual trips in 2017/18. 

Station Year 
opened 

Entries & 
exits 
2017/18 
(ORR) 

Scheme 
forecast 

% diff 
from 
17/18 

Forecast 
(simple 
catchment) 

% diff 
from 
17/18 

Forecast 
(probabilistic 
catchment) 

% diff 
from 
17/18 

Comment 

Conon Bridge 2013 15,100 36,000 138 24,453 62 25,091 66 Poor service 
performance 
suppressing 
demand. 

Energlyn & 
Churchill 

2013 101,362   73,015 -28 75,467 -26  

Fishguard & 
Goodwick 

2012 20,136   14,345 -29 16,317 -19  

Tweedbank 2015 436,978 43,242 -91 806,146 84 520,157 19 Suppressed 
demand due 
to car park 
capacity. 

Galashiels 2015 356,262 46,862 -44 200,381 -44 157,217 -56 Tourism/bus 
interchange 
generating 
extra trips. 

Stow 2015 69,834 11,686 -83 96,263 38 77,841 11  

Gorebridge 2015 115,102 180,038 56 254,489 121 226,058 96 Potential bus 
competition. 

Newtongrange 2015 157,016 105,836 -33 239,277 52 209,621 34  

Eskbank 2015 338,932 261,050 -23 312,784 -8 250,757 -26  

Shawfair 2015 31,588 123,720 292 106,627 238 65,467 107 Potential bus 
competition. 

When comparing forecast demand with actual demand it should be noted that the trip 
end model has been calibrated using stations that, with a few exceptions, are well-
established and have been open for many years. There is evidence that it can take 
several years (perhaps 5 or 6) for a new station to reach its potential as individuals 
adjust their behaviour over time (Preston & Dargay, 2005; Blainey, 2009). This should be 
borne in mind when comparing forecast demand with actual, especially in the initial 
years. 

2.4 Abstraction Analysis 

As a new station might abstract passengers from existing stations, the net additional 
demand realised could be substantially lower than the gross forecast might suggest. If 
the scheme appraisal process does not take this into account, it could result in a new 
station being built that fails to deliver the expected economic and societal benefits. To 
address this issue, a methodology has been developed to assess the potential extent of 
abstraction based on changes that occur to the probabilistic catchment(s) of the 
affected station(s). This has been incorporated as an optional analysis in the automated 
DAFNI model, and consists of the following main steps: 



 

Figure 3 Summary of demand forecasts for 10 recently opened stations and 
comparison with scheme forecasts and actual trips in 2017/18 

• For a station identified as being ‘at risk’ of abstraction, a ‘before’ choice set 
(derived from current stations only) and an ‘after’ choice set (derived from current 
stations plus the proposed new station) for each postcode6 are generated. 

• The percentage change in the weighted population for the ‘at risk’ station, in the 
before and after situation, is calculated. 

• Assuming an elasticity of one between weighted population and the number of 
entries/exits, the percentage change is applied to the latest annual entries/exists 
for the ‘at risk’ station, thus giving an estimate of the abstraction effect7. 

This methodology has been used to assess abstraction resulting from several potential 
new stations in Wales, as part of consultancy work carried out for the Welsh 
Government. For example, the abstraction effect of a proposed new station known as 
‘South Wrexham’ (located in Rhosymedre), on the existing stations at Ruabon and Chirk 
was analysed. This indicated that 40% of trips would be abstracted from Ruabon and 
Chirk. The effect of the new station on the probabilistic catchment for Ruabon station 
can be seen by comparing Figures 4 and 5, which show the catchment before and after 
the new station. While the proposed methodology has been successfully applied and 
appears promising, further work is needed to validate the approach.  



For more information about the trip end model and its evaluation, see Young & Blainey 
(2018) and Young (2019). 

 

Figure 4 The existing probabilistic catchment for Ruabon station. 

 

Figure 5 The probabilistic catchment for Ruabon station if South Wrexham station was 
opened. 



3 IMPLEMENTATION ON DAFNI 

3.1 About DAFNI 

DAFNI is planned to become the UK’s computational platform to support academic 
research into infrastructure systems. This research aims to deliver a national 
infrastructure system that is more efficient, reliable, resilient and affordable. DAFNI will 
provide data storage, data analytics, simulation, modelling and visualisation facilities 
and is funded by RCUK as part of the UK Collaboratorium for Research on Infrastructure 
and Cities (UKCRIC). Several pilot projects have been run alongside development of the 
core DAFNI platform, supported by software developers from the DAFNI pilot team. The 
projects have each implemented an existing infrastructure model in an environment 
that emulates the expected future DAFNI system, enabling system components to be 
validated and hardware to be stress-tested. The station demand forecasting model 
described in this paper was chosen as one of the pilot projects, with implementation 
funded via an EPSRC Impact Acceleration Account grant from the University of 
Southampton. 

3.2 Automating the Model 

Prior to beginning work on the pilot project, the model had only been run on a manual 
basis. Several stand-alone R scripts had been written to reproduce many of the 
necessary processing steps, but these still required significant manual intervention to 
make adjustments specific to each scenario and to run relevant code. In addition, the 
GIS analysis that was primarily used to create the station choice sets, was carried out 
manually using ArcGIS. The first stage of the project was, therefore, to create a fully 
automated model that was ready to be transferred to the DAFNI team for 
implementation. To avoid costly proprietary software licenses, it was a requirement that 
only open source software tools should be used. The automated model was primarily 
developed as an R package which was maintained on a private GitHub repository. 
Although not intended to be released to the wider R community, this enabled the model 
to be easily shared with the DAFNI team and imposed the rigour of established package 
conventions, such as organization of code and data, and providing comprehensive 
function documentation.  

A significant challenge of the project was using open source tools to replicate the spatial 
analysis capabilities provided by ArcGIS, in particular the powerful origin-destination 
cost matrix tool of the Network Analyst extension, which had previously been used to 
generate the choice set of ten nearest stations for each postcode. This was ultimately 
achieved using pgRouting, which is an extension to a PostGIS/PostgreSQL spatial 
database that provides routing capabilities (see: https://pgrouting.org). However, as 
pgRouting does not support identifying the ‘nearest x facilities’ to an origin, a series of 
SQL wrapper functions were written to extend pgRouting’s functionality and to optimise 
the routing performance on the large road network (Ordnance Survey Open Roads). This 
process has a very high computational cost and to reduce the time required for a model 
run it has been parallelised, taking advantage of the multiple processing cores available 



for the container (virtualised operating system) running the model on DAFNI. This has 
delivered a step-change in performance, reducing the time to model a single station 
from around 30 minutes on a high-end workstation to less than five minutes. Time 
savings are substantially higher for larger and more complex model scenarios. 

The model as hosted on DAFNI generates a demand forecast (predicted trips per year) 
for one or more proposed local railway stations. If required it can also produce an 
analysis of potential abstraction of journeys from existing stations, enabling the net 
impact of a new station on rail use to be estimated. Forecasts for multiple stations can 
be accommodated as part of the same job. These can be treated independently 
(alternative station locations are to be assessed) or concurrently (the proposed stations 
will coexist). The model provides a high degree of customisability, with the ability to 
adjust the service frequency of existing stations (for example if a proposal for a new 
station is accompanied by a planned increase in service level on a route), and to input 
exogenous data, such as new jobs, houses, and/or population. 

3.3 Web-based User Interface 

The DAFNI development team has provided a professional web interface that enables 
the user to interact with the model, delivers visualisation of outputs, and handles job 
management. It includes an interactive map that allows the user to select the location 
and road access point of a proposed station and to identify relevant postcodes or 
workplace zones to assign exogenous data to. It also has the facility to download or 
upload a model configuration file, providing further flexibility, such as the ability to 
make minor amendments to a prior job or automating generation of model inputs from 
other systems. The interface is intuitive to use, and no specialist knowledge or skills are 
necessary in order to prepare and submit a job to the model. A screenshot showing the 
form used to add stations to the model is shown in Figure 6. 

 



Figure 6 The DAFNI model web interface showing the proposed station input form. 

 

4. CONCLUSIONS  

Forecasting demand for new railway stations is considered by the rail industry to be a 
‘special case’ requiring bespoke models to be developed and applied in a local context 
for the specific scheme being appraised. This is primarily achieved using trip rate/end 
models that have not always performed well. Given the background of growing 
passenger demand and increasing interest in opening new stations and lines, there will 
be an ongoing need to assess proposed schemes. The national trip end model that has 
been developed and implemented on DAFNI has the potential to remove the need for 
scheme proponents, such as local and regional government or transport authorities, to 
commission costly bespoke studies. In cases where it was still considered prudent to 
apply local models, this national model could be used as a sense-check tool. For 
example, if demand forecasts produced by the local and national models differed by an 
order of magnitude, it would be a clear warning that the local models may not be 
reliable. Given that the level of station usage is a key driver of the benefit-cost ratio 
upon which investment decisions are made, identifying a potential problem with the 
demand forecast at an early stage of a project would be hugely beneficial. 
Implementation of the model on DAFNI makes this powerful tool available to transport 
planning practitioners and other stakeholders for the first time. The data storage and 
transformation capabilities of DAFNI ensure that the model data inputs are always 
available and up-to-date, freeing practitioners from onerous collection and processing 
tasks. The tool has the potential to transform the assessment of new station schemes, 
enabling the rapid review of options for individual stations or new lines.  

 
NOTES 

1. Trip rate models assume the number of trips to be some function of the population 
in the area surrounding a station (its catchment), while trip end models include 
additional variables relating to station services, facilities or the locality. 

2. Predictive performance was measured by comparing the sum of predicted 
probabilities for each station with the number of times that station was actually 
chosen. To assess the overall performance of a model, the absolute difference 
between the two figures was summed for all stations and expressed as a 
percentage of the total number of choice situations in the model. A ‘predictive 
performance difference’ of zero percent would therefore indicate no deviation 
between observed and predicted choice. There is no theoretical upper limit to the 
measure. 

3. Initial log-likelihood assumes there is an equal probability of each alternative in a 
choice set being chosen. 



4. The zonal system is therefore of much higher spatial resolution. There are some 
230,000 census output areas in GB, but around 1.5 million postcodes. 

5. Stations were divided into six categories (A – F) when the GB rail industry was 
privatised in 1996. Category A stations are national hubs, Category B are national 
interchanges, Category C are important feeder stations, Category D are medium 
staffed stations, and Category E and F are small stations, staffed and unstaffed 
respectively (Green & Hall, 2009). 

6. Only postcodes that are within 60 minutes’ drive time of a station are considered 
as potential candidate postcodes when calculating the probability weighted 
population to assign to a station. This is based on empirical evidence. This applies 
to both the station demand forecast and the abstraction analysis. Note: this does 
not mean that all postcodes within 60 minutes of a station are included. Only if the 
station of interest appears in a postcode's choice set (of ten nearest stations) will 
that postcode be considered. 

7. This is based on evidence in the PDFH relating to the external environment and 
forecasting framework assumptions that the population elasticity is equal to one 
for the number of trips originating in a zone (Association of Train Operating 
Companies, 2013, Chapter C1). Although PDFH elasticities are intended to be 
applied to flows, the unitary elasticity assumes that only origin population can 
influence growth in rail demand. There is a lack of evidence on the appropriate 
elasticity to use if both origin and destination population changes are considered. 
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