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When the train starts, and the passengers are settled
To fruit, periodicals and business letters

(And those who saw them off have left the platform)
Their faces relax from grief into relief,

To the sleepy rhythm of a hundred hours.

Fare forward, travellers! not escaping from the past
Into different lives, or into any future;

You are not the same people who left that station
Or who will arrive at any terminus,

While the narrowing rails slide together behind you

T. S. Eliot, “The Dry Salvages”
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MODELLING RAILWAY STATION CHOICE: CAN PROBABILISTIC CATCHMENTS
IMPROVE DEMAND FORECASTS FOR NEW STATIONS?

by Marcus Adrian Young

The aim of this thesis is to determine whether the performance of the aggregate rail demand
models that are commonly used to forecast demand for new railway stations can be improved
by incorporating probabilistic station catchments derived by means of station choice models.
The current approaches to forecasting demand for new railway stations have been examined
and their limitations identified, and previous work to develop station choice models and
incorporate them into demand models has been reviewed. A series of station choice models
able to predict station choice at small-scale origin zones were calibrated using revealed
preference data from passenger surveys carried out in Scotland and Wales. An automated data
processing framework, incorporating a bespoke multi-modal route planner, was developed
to derive the model predictor variables from disparate sources of open transport data. The
station choice models were found to perform substantially better at predicting station choice
than a base model where the nearest station was assumed to be chosen. Trip end models
were calibrated for Category E and F stations in Great Britain, using both deterministic and
probabilistic station catchments, and a methodology was developed to apply these models to
predict demand for new stations and to assess the effect of abstraction on existing stations.
The methodology was used to forecast demand at several recently opened stations, including
a newly opened line. The models with probabilistic catchments were found to perform
better than those with traditional deterministic catchments, and to produce more accurate
forecasts than those made during the scheme appraisal process. This is the first known
example of successfully incorporating probabilistic station catchments into an aggregate rail
demand model, and represents a significant advance over previous work in this area. These
findings have important policy implications. They can be used to update industry guidance
on best-practice for implementing this type of model in a local context and, more importantly,
provide the basis of a robust and transferable national trip end model for Great Britain.
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Chapter 1

Introduction

The railway in Britain has experienced considerable growth in recent years, with total
passenger journeys increasing by 51% (an additional 584 million journeys) over the past
decade alone (Office of Rail Regulation, 2017). This has been accompanied by an expansion
in the network, with 56 new stations and several new lines opening over the same period
(Alderson & McDonald, 2017). This growth looks set to continue, with further new lines
and stations currently under construction or planned, and campaigns being run nationwide
by communities eager to be connected to the rail network (Campaign for Better Transport,
2017). However, there are concerns about the accuracy of the station demand forecasts that
are used to determine the viability of proposed new schemes. A report commissioned by
the UK Government to investigate the issue, compared forecast and observed demand at
23 newly opened stations (Steer Davies Gleave, 2010). It found that forecast demand was
above or below observed demand by a margin of more than 20% in 14 cases, including an
under-prediction in excess of 100% at three stations. More recently, the demand forecast for
the new Borders Railway line in Scotland was described as a ‘shocking failure’ (Campaign
for Borders Rail, 2016), after usage figures revealed that passenger trips in the first year
of operation were up to eight times higher than forecast for three of the new stations, and
lower than predicted for the other four. Inaccurate forecasts can have potentially serious
consequences. Under-prediction might lead to the unnecessary rejection of a proposal on
the grounds of the perceived benefit-cost ratio, or to the inadequate provision of station
and network infrastructure. Conversely, over-prediction, or not adequately accounting for
abstraction from existing stations, could result in a new station that fails to deliver the

expected economic and societal benefits.

1.1 The station catchment problem

Although the UK Department for Transport (DfT) has published some general guidance
for those carrying out or commissioning demand forecasts for new local railway stations

1



2 Chapter 1 Introduction

A

‘-‘
ﬁruf‘

a}} ﬁ‘kﬁ' 3’;.%8

:)-,1,

FIGURE 1.1: Example of a radial station FIGURE 1.2: Example of zone-based sta-
catchment that is divided into two bands. tion catchments (using census output
area as zone).

Population
1: < 0.8km

/ &

(Department for Transport, 2011), the models used are usually developed for, and applied to,
a specific local context. In most cases trip rate or trip end models are adopted, as was the
case in two-thirds of the stations/lines considered in the Steer Davies Gleave report. Trip
rate models assume the number of trips to be some function of the population in the area
surrounding a station (its catchment), while trip end models include additional variables
relating to station services, facilities or the locality. Previous work by Blainey (2010) and
Blainey and Preston (2010) successfully calibrated national trip end models suitable for
general application in forecasting demand for new local rail stations in England and Wales.
However, a weakness of this previous work, in common with trip end models generally, lies
in how the station catchments are defined. Two methods are typically used; either a distance-
or time-based buffer is placed around the station (see Figure 1.1), or the study area is divided
into zones and each zone is assigned to its nearest station (see Figure 1.2). The latter was the
method adopted by Blainey (2010), with census output areas used as the zonal units. Both
approaches produce discrete non-overlapping catchments which imply that station choice is
a deterministic process (anyone beginning a trip from within a zone will always choose to
board at the same station) and that stations do not compete with each other for passengers.

While there will be some trip origins where the choice of station is effectively deterministic,
with the probability of the nearest station being chosen at or very close to one, it is not
difficult to find real-world examples where this is unlikely to be the case, either based on
personal experience of the author, or through conversations with other rail users. For example,
consider the potential choice of station for someone beginning their trip from the Boldrewood
Innovation Campus in Southampton. The five most likely alternative stations, listed in order
of road distance from the campus, are: Swaythling, St. Denys, Southampton Airport Parkway,
Southampton Central, and Eastleigh. The location of the campus and each of these stations,
together with some key characteristics of the stations, are shown on the map in Figure 1.3. A
deterministic catchment would assign all trips originating from the campus to the nearest

station, which in this example would be Swaythling. For those walking to the station, only
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Swaythling or St. Denys are realistic options, with the access journey taking around 30
minutes. This is likely to be too far for many travellers, especially given the availability
of a regular and reliable bus service as an alternative main access mode, suggesting that
walk-only mode will account for only a small proportion of station access journeys. Although
it is the nearest station, Swaythling has the lowest daily service frequency, and is only served
by a single train operating company. While Swaythling is easy to access by bus from the
campus, so are the other stations (apart from St. Denys) and these may be preferred due
to more frequent services and the greater range of destinations served by direct trains. If
driving to a station by car from the campus then all five stations are relatively easy to get to,
but parking provision is very limited at Swaythling and St. Denys, suggesting that one of the
other three stations will be chosen instead, especially given their superior service levels. The
ultimate destination is also likely to influence the station chosen. For example, if travelling to
the West Country via Salisbury then fast services to Salisbury and beyond are only available
from Southampton Central; while someone travelling to London might choose Southampton
Airport Parkway or Eastleigh, thus avoiding a potentially congested drive through central
Southampton. These stations are also in the direction of travel, thus reducing the on-train
journey time and fare (for example, at the time of writing an off-peak return from Eastleigh
to London is £4.10 cheaper than the same ticket from Southampton Central). Taking all these
factors into account, it seems likely that a relatively small proportion of travellers beginning
their journey at the Boldrewood Innovation Campus would actually choose to depart from

Swaythling, with the majority preferring to depart from other stations.

This anecdotal evidence is supported by prior research, discussed in detail in Chapter 2,
which shows that in reality station catchments are far more complex entities than the simple
catchment definitions allow. Simplistic catchments have been found to account for only 50-60
percent of observed trips (Blainey & Preston, 2010). Station choice is not homogeneous
within zones, with catchments overlapping (Mahmoud, Eng, & Shalaby, 2014) and varying
by access mode (Mahmoud et al., 2014) and station type (Lythgoe & Wardman, 2004).

If station catchments are not correctly defined in the aggregate demand models, then inap-
propriate weight will be given to other model variables, such as service quality measures, as
drivers of trip generation, rather than the catchment population. By defining more realistic
catchments, the parameter estimates will be more robust, and the models will be more trans-
ferable (Wardman & Whelan, 1999). A potential mechanism to improve the representation of
station catchments would be to define them probabilistically, by using an appropriate station
choice model to calculate the probability of a particular station being chosen for each zone.
While there is a substantive body of prior station choice research (which is comprehensively
reviewed in Chapter 3), the studies have primarily focussed on identifying and understanding
the relevant explanatory factors, with relatively little attention given to how station choice
models could be used to improve rail demand models. There are two notable exceptions.

The first is the attempt by Wardman and Whelan (1999) to incorporate probabilistic station
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FIGURE 1.3: Railway stations that might be chosen by someone beginning a trip at Bol-
drewood Innovation Campus, showing key characteristics (TOC = train operating company).

catchments into a flow model' by apportioning the population of postal sectors? to one
of five competing stations. However, due to time and computer resource constraints they
had to use a subset of the flow data, which resulted in the model failing to converge. They
recommended further work, noting that they had ‘seriously underestimated the complexity
of [the] task and the computing and time resources required’. However, this approach has
not been revisited since, despite the considerable advances in computing power over the past
two decades. The second, and probably the most refined methodologically, is that proposed
by Lythgoe and Wardman (2002, 2004), where station choice is an intrinsic component of
a flow model, with a station’s generation potential represented by the population within
40km allocated to a grid of zones. However, this approach was intended to forecast demand
for parkway stations and is limited to modelling inter-urban journeys greater than 80 km
(subsequently reduced to 40 km by Lythgoe, Wardman, and Toner (2004)).

The research described in this thesis will seek to address the problem by developing station
choice models that can be used to generate probabilistic station catchments, which can
subsequently be integrated into trip end or flow models. For example, a set of alternative

stations could be allocated to each unit postcode, and the probability of each station being

'Flow models forecast trips from each origin station to each destination station and additionally take account
of the train leg and characteristics of the destination.
2There are approximately 3,000 addresses in a postcode sector.
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chosen would then be calculated using a station choice model. Figure 1.4 illustrates the
concept, using Boldrewood Innovation Campus as an example zone centroid with ten alter-
native stations. The probabilistic catchment for a specific station could then be ‘generated’,
as illustrated in Figure 1.5, where the probability of Swaythling station being chosen for
each postcode polygon is represented using a choropleth. The population of each postcode,
obtained from census data, would be apportioned to each station based on these probabilities,
thus forming the population explanatory variable for a trip end model. Ideally, the calibrated
station choice models would be readily transferable, and not limited to modelling station
choice in specific situations or local contexts. Collecting the necessary observed choice and
explanatory data to calibrate a rigorous and effective predictive model on a case-by-case basis
is an expensive and time-consuming process, and this could be avoided if a single generalised

model with wide applicability was developed.

1.2 Research aim and objectives

The overall aim of this thesis is to determine whether the performance of the aggregate
railway station passenger demand models can be improved by incorporating probabilistic
station catchments derived by means of station choice models. The key objectives that must

be met to achieve this aim are as follows:

1. Obtain, process and validate suitable survey datasets that can reveal observed station

choice behaviour, ideally covering more than one region of GB.
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2. Derive candidate predictor variables for the station choice models, with a particular
focus on maximising the potential of open transport data sources that have recently
become available. This should include an accurate representation of access journeys

and train-leg components, obtained using a suitable multi-modal route planner.

3. Calibrate station choice models appropriate for integrating into aggregate rail demand

models, and assess their predictive performance and transferability.

4. Develop a methodology to incorporate probability-based station catchments into aggre-
gate demand models and apply this methodology to calibrate a national-scale model

for local railway stations in GB.

5. Develop a practical methodology for generating demand forecasts for new stations
using the national-scale model, and for estimating abstraction effects from existing

stations.

6. Apply the demand forecasting methodology to several case studies, and carry out a
performance appraisal, including an assessment of models with either deterministic or

probabilistic station catchments.

1.3 Research scope

The main focus of the original contribution of this thesis is to challenge the long-standing
convention that station catchments in aggregate rail demand models should be defined in a
deterministic manner, by developing and appraising an alternative approach where station
catchments are defined probabilistically using models of station choice. To accomplish this
overarching contribution, three core elements of research were completed: calibration of
station choice models; development of a national trip end model for GB in which station
catchments are defined probabilistically using the station choice models; and the application
and appraisal of the national trip end model. Each core element can be divided into several
sub-elements each with a specific research focus. These research elements are summarised
in Figure 1.6. To help guide the reader, the original contribution and/or significant outputs
or findings that arose from each element are also presented in this diagram. A full discussion
of the empirical and methodological contributions to knowledge in the field of rail demand

forecasting arising from this thesis is reserved for the final chapter (Section 9.3.3).

1.4 Thesis structure

Following on from this introduction, Chapter 2 considers the current state of practice with
regard to forecasting demand for new railway stations in the UK, identifying weaknesses
in how station catchments are defined in the aggregate demand models that are typically
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adopted, and assessing the accuracy of demand forecasts produced over recent years. Chapter
3 then presents a review of prior station choice research, and considers the extent to which
station choice models have been used to improve rail demand models. Chapter 4 is concerned
with the observed station choice data that forms the basis for this research, describing
how it was cleaned and validated, and providing some descriptive analysis, including the
visualisation of station catchments. Chapter 5 deals with the data sources for the predictor
variables used in the station choice models, including the development of a multi-modal
route planner and an automated framework to derive model variables from open transport
datasets. Chapter 6 then describes the calibration and appraisal of a range of station choice
models that have the potential to be incorporated into both trip end and flow rail demand
models. Chapter 7 then proposes a methodology for integrating a station choice component
into a trip end model, and explains its use to calibrate a national-scale trip end model for
GB. In Chapter 8 a methodology to forecast station demand using the national-scale model
is proposed, and it is then applied to forecast demand for a number of recently opened
stations, including a new railway line. The predictive performance of the models, using both
deterministic and probability-based catchment definitions, is then assessed and compared
with official scheme forecasts. Finally, in Chapter 9, the outcomes of the research project are
summarised, and several areas for potential future work are identified.



Chapter 2

Forecasting demand for new railway

stations: the status quo

2.1 Introduction

This chapter begins by considering the state of rail demand in the UK today, and the growth in
stations and lines that is expected to continue into the future (Section 2.2). This is followed by
a review of the established approaches to modelling demand for new stations, concentrating
on the aggregate models that are typically adopted in the UK (Section 2.3). In Section 2.4,
the methods used to define station catchments in these aggregate models are examined,
focussing on their ability to produce realistic representations of actual station catchments.
The accuracy of demand forecasts produced by aggregate models during the scheme appraisal
process is then assessed in Section 2.5. The chapter closes by summarising the main findings

and drawing some conclusions (Section 2.6).

2.2 Rail demand today

Rail passenger demand can be measured in terms of the number of passengers who choose
to travel by train, rather than using an alternative transport mode or not travelling at all.
Where passengers choose to travel from and to, and what route they decide to take, will in
turn determine the level of demand generated by, or attracted to, each railway station on the
rail network. The level of rail passenger demand can be influenced by a range of factors that
are either outside of the control of the rail industry (exogenous factors) or within the control
of the rail industry (endogenous factors). Some examples of these factors are shown in Table
2.1.
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Exogenous factors Endogenous factors

Gross domestic product (GDP) of a country or region  Rail fares

Level of employment Punctuality
Population Reliability
Levels of private car ownership and operating costs Station facilities

Availability and costs of other public transport modes Service frequency

Travel time of other modes (e.g. effect of congestion) Journey time

Integration of rail with other modes Level of crowding on trains
Station location
New stations or new lines

TABLE 2.1: Examples of exogenous and endogenous factors that may influence rail passenger
demand. Based on information provided in the PDFH (Association of Train Operating
Companies, 2013).

In Great Britain, travel by rail has experienced something of a resurgence in recent decades,
with a rapid growth in passenger journeys replacing the declines of the 1960s and 1970s and
the modest growth of the 1980s. The annual number of journeys has more than doubled
over the past 20 years, as shown in Figure 2.1. The average annual growth in passenger
journeys was 3.95% between 1997/98 and 2016/17, compared to 0.54% between 1980 and
1996/97! (Office of Rail and Road, 2017). During the last two decades growth in rail travel
substantially out-paced growth in GDP, with the number of passenger journeys rising 104%,
while GDP increased by only 48%. This is the reverse of the relationship seen in the previous
20-year period, when GDP rose 59% and passenger journeys increased by only 14%2. While
rail use has been increasing over recent years, travel by other modes has been falling. For
example, in England the total number of trips made by rail increased by 56% between 2002
and 2016, but trips by car/van and bus fell by 13% and 19% respectively (Department for
Transport, 2017b).

The rail network has also been expanding, with more than 100 stations either reopened or
newly built since the privatisation process was completed in April 1997, including 56 in the
past ten years alone (see Figure 2.2) (Alderson & McDonald, 2017). Many more stations
are currently under construction, proposed or being campaigned for by local communities
(Railfuture, 2018). New lines have been built, ranging from local services such as the Borders
Railway between Edinburgh and Tweedbank which opened in 2015 with seven new stations,
to major infrastructure projects such as High Speed 1 between London and the Channel
Tunnel which fully opened in 2007. Further new or extended lines of both local and national
significance are currently being planned or actively considered (RailEngineer, 2016), and
there are local campaigns seeking to get former rail lines across the country re-opened

! Annual passenger journeys were reported by calendar year from 1950 to 1984 (inclusive), and by financial
year from 1985/86.

GDP data obtained from https://www.ons.gov.uk/economy/grossdomesticproductgdp/
timeseries/abmi/qgna. Q1 2017 compared with Q2 1997; and Q1 1997 compared with Q4 1977.


https://www.ons.gov.uk/economy/grossdomesticproductgdp/timeseries/abmi/qna
https://www.ons.gov.uk/economy/grossdomesticproductgdp/timeseries/abmi/qna
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FIGURE 2.1: Annual passenger journeys by rail in Great Britain over the period 1960-
2016/17. Based on data provided by Office of Rail and Road (2017).

(Campaign for Better Transport, 2017). Figure 2.3 (RailEngineer, 2016) shows the new
passenger lines that have opened since 2000, and those currently under development, or at

various stages of consideration (as at May 2016).

Against this backdrop, the potential to meet local or regional transport needs, and also
economic growth objectives, by investing in new rail stations, routes or services, is increasingly
being recognised by UK local authorities, Passenger Transport Executives and Local Enterprise
Partnerships (Department for Transport, 2011). However, in order to assess whether a
particular scheme will achieve the required objectives, it is necessary to produce accurate
forecasts of the effect on demand of any such proposal. In the next section, the modelling

techniques currently available to produce such forecasts will be discussed.

2.3 Modelling station demand

The main source of advice on passenger demand forecasting for the rail industry in Britain
is the Passenger Demand Forecasting Handbook (PDFH), which is maintained and devel-
oped by the Passenger Demand Forecasting Council (PDFC) (Association of Train Operating
Companies, 2013). The PDFC consists of the train operating companies, Network Rail, DfT,
Transport Scotland, Office of Rail and Road (ORR), Transport for London (TfL), the Urban
Transport Group, the Rail Safety and Standards Board, HS1, HS2, Rail North and the Welsh
Government. The most recent version of the PDFH (v5.1) was published in April 2013,
and is said to summarise ‘over twenty years of research on rail demand forecasting’ and be
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FIGURE 2.2: Number of new railway stations opened in Britain on the national rail network
for each of the last ten years. Based on information provided in Alderson and McDonald
(2017).

‘recognised within the industry as the key source of evidence in this area’ (Association of
Train Operating Companies, 2015).

The primary focus of the PDFH is on the elasticity-based approach to forecasting demand
which forms the core of the industry’s model, MOIRA, which is overseen by the PDFC. MOIRA
contains two sets of timetable data, one for the base year and one for the forecast year, with
the latter incorporating all the service changes that are to be modelled. Other key data inputs
to MOIRA are the Latest Earnings Networked Nationally Overnight (LENNON) database
which contains details of all tickets sold in the base year, and the EDGE database that holds
forecasts of the drivers of exogenous demand (Worsley, 2012). The forecast number of
journeys (J,,,) between a pair of zones can be given by the following:

Jnew = IEIPITJbase’ (2-1)

where I, Ip, I are indexes representing the proportionate increase in journeys due to
external factors, fares and journey times respectively, and J,,, is the journey data for the
base year obtained from LENNON. I; and I, are both composed of a range of variables
with different elasticities, for example a simplified I;; incorporating variables for GDP and

population would take the following form:

DP.. \& (POP,,,\°
IE:(M) X(M) ’ (2.2)
GDPy,, POP,,,
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FIGURE 2.3: New passenger rail lines opened in Britain since 2000, currently under develop-

ment or at various stages of consideration (as at May 2016). Note: Reprinted from ‘After

Borders, what next?’, by RailEngineer, 2016, April 22. Image reproduced with permission of
the rights holders, Graeme Bickerdike and Rail Media.

where g and p are the elasticities of GDP and population respectively. I consists of a single
variable known as generalised journey time (GJT), and its associated elasticity. GJT is the
sum of at least three elements: station to station time in minutes; a penalty for service
frequency expressed in equivalent minutes of journey time; and a penalty for interchange
expressed in equivalent minutes of journey time. Other factors can be incorporated within
GJT, for example crowding, and these will also be expressed in terms of equivalent minutes
of journey time (Association of Train Operating Companies, 2013). The elasticity values for
each variable that are used in MOIRA are predominantly based on analysis of time series
data and are discussed in detail in the PDFH.
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It can be seen that this approach is an incremental one, forecasting how base demand will
change as a result of changes in fare, service or external factors. This presents a problem when
forecasting demand for a new station where there is no base demand, or when a significantly
improved service is to be offered at a station where base demand is currently very low. The
PDFH suggests that the elasticity-based approach is probably only appropriate for changes of
up to 20% in explanatory variables. If the incremental approach is inappropriate, alternative
modelling techniques are needed that can forecast the absolute level of demand, and the
PDFH devotes two chapters to this subject, one outlining the types of model available and
when they might be used, and a second discussing the available evidence on modelling
absolute demand, derived from both industry and academic research. The types of model

are discussed in the sections that follow.

2.3.1 Simple demand models

The simplest form of model to forecast absolute demand is the trip rate model, which considers
station demand to be some function of the population of its catchment (Preston, 1991a).
A trip rate model might take the following linear form, suggested by Blainey (2010) as an
initial basic model:

Vi=a+pBP, 2.3)

where V; is the passenger entries and exits at station i, P; is the catchment population of
station i, and a and f are parameters to be estimated. Such a model would need to be
calibrated based on existing stations, with the dependent variable the observed number of
entries and exits over a time period (usually a year). The selection of comparable stations
on which to estimate the model is critical for producing a successful trip rate model, as they
are known to lack spatial transferability and are unlikely to be useful unless the demand
forecast scenario is very similar to the one used to calibrate the model (Preston, 1991b). This
is because they do not take account of the differences in relevant factors that influence trip
rates, such as socio-economic characteristics of the catchment population, the level of train
service at the station, or how attractive destinations are (Preston, 1991a).

The transferability of the trip rate model can be improved by incorporating a range of these
additional explanatory factors into the model, and it then becomes known as a trip end
model. A series of trip end models were developed by Blainey (2010) to forecast the number
of trips made from local stations in England and Wales, with the following linear additive

model an example:
A
Vi=a+pB > Pwy+08F +AT + TJoby + pPk;, (2.4)
a

where P, is the resident population of census output area a, A is all output areas whose

closest station by car travel time is station i, w, is a distance decay function, F; is the number
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of trains calling at station i on a normal weekday, T is the distance in km from station i to
the nearest category A-D station®, Job,, is the number of jobs located within four minutes
drive of station i, Pk; is the number of parking spaces at station i, and a, f3, 6, A, 7, and p

are parameters.

2.3.2 Spatial interaction (flow) models

A weakness of the trip end model, in common with the trip rate model, is that it does not take
account of the attractiveness of destinations. This requires a more complex spatial interaction
model that is able to estimate passenger flows between origin station i and destination j for
all origin-destination (OD) pairs. A spatial interaction model takes the following general
form:

Ty = f(V;W;Sy), (2.5)

where Tj; is the number of trips between origin i and destination j, V; represents attributes
of origin i (e.g. population), W; represents attributes of destination j (e.g. number of work
places), and S;; represents the separation between origin 7 and destination j (e.g. distance)
(Rodrigue, Comtois, & Slack, 2013). Preston (1991a) developed log-linear and semi-log
direct demand models which were calibrated using data on 99 flows for small town, suburban
and rural stations in West Yorkshire, and nine model variants of a multiplicative form were
developed by Blainey and Preston (2010) based on some 2,400 flows for small stations in

South Wales, with the following one of the basic model forms tested:

p
Tj=a (ZPawa) Jobl,PklJCF], (2.6)
a

where Tj; is the number of trips made from station i to j, P,w, is population weighted by
distance for each census area in the station’s catchment, Job;, is the number of jobs located
within four minutes drive of station i, Pk; is the number of parking spaces at station i, J;;
is the average journey time for direct trains from station i to j, Fj is the number of direct
trains from station i to j on a normal weekday, and a, 8, T, p, 6 and 7 are parameters to be
estimated.

3Stations were divided into six categories (A — E) when the GB rail industry was privatised in 1996. Category
A stations are national hubs, Category B are national interchanges, Category C are important feeder stations,
Category D are medium staffed stations, and Category E and F are small stations, staffed and unstaffed respectively
(Green & Hall, 2009).
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2.4 But what about choice?

2.4.1 Aggregate models and catchment definitions

The models discussed in Sections 2.3.1 and 2.3.2 rely on data for some explanatory variables
that is aggregated, and it is necessary to explicitly define the unit of aggregation before
any models can be developed. The unit of aggregation is the station catchment, which will
often be divided into a collection of zones that are used to aggregate relevant data, such as
population or socio-economic characteristics. A variety of approaches have been adopted to
define station catchments, while the zones can be defined by the researcher or an existing

zone structure may be applied, for example one based on a national census data unit.

Preston and Aldridge (1991) included the population within a 2 km radius of each station
in trip end models calibrated for 36 stations within the Greater Manchester area, and in
subsequent direct demand models, Preston (1991b) divided the catchment into two radial
zones, up to 0.8 km and 0.8km to 2km from the station (see Figure 1.1). In the USA a half
mile circular catchment around a station is considered the ‘de facto standard’ for planning
transit developments, and its outer circumference is intended to represent the distance that
a passenger can walk at 3 mph and reach the station within 10 minutes (Guerra, Cervero, &
Tischler, 2012). In a variation of the circular catchment, a series of concentric ‘doughnut
shaped’ bands delimiting zones of population where travel time to the station is up to 4,
6, 8, 10, 15, 20, 30 and 45 minutes were used in a spatial interaction model developed by
Wardman and Whelan (1999).

Another approach is to divide population into zones and then allocate each zone to its nearest
station (see Figure 1.2). This was adopted by Blainey (2010) in several trip end models,
where census output areas were assigned to the nearest station measured by road travel
time. A more sophisticated variation of this method developed by Blainey and Preston (2010)
created flow-specific catchments in spatial interaction models, on the premise that passengers
will seek to minimise the total journey time from origin to destination. Each census output
area was allocated to one of four alternative stations for each destination, on the basis of
minimising total journey time. With this method, a station can have a different catchment (a
different set of census output areas) for each destination, and while the model is deterministic
in the choice of station, this choice can vary by destination.

The fact that choice of station is deterministic in these aggregate models gives rise to two
implicit assumptions: first, any trip originating from a location will use the single station
that has a catchment encompassing that location; and second, each station has a discrete
catchment that does not overlap with any other station’s catchment. The models do not
allow for the possibility that a particular locality falls within the catchment of more than
one station and that different passengers starting a trip from the same locality might choose

different stations. Nor do they explicitly recognise that stations might be in competition,
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with improved facilities or services at one station resulting in passengers being abstracted
from another. It may be possible to introduce explanatory variables into a model to act as a
proxy for choice or competition. For example, in a study of demand for small local stations,
Blainey (2010) attempted to account for the effect on demand of proximity to larger stations
by included the distance to larger (Category A-D) stations as a single variable. Although the
variable was significant, its inclusion improved model fit, as measured by adjusted R-squared,
by only 0.003.

2.4.2 Catchments in reality

It is important to understand whether the artificially constructed catchments described in
the previous section are representative of real station catchments, and whether the implied
assumptions hold. A number of studies have sought to explore this and some of their findings

are reviewed in the sections that follow.

2.4.2.1 Radial catchments

Blainey and Evens (2011) used data for some 114,000 trip ends obtained from the National
Rail Travel Survey (NRTS)* to investigate the extent to which observed station catchments
correspond with the common catchment definitions used in aggregate models. They found
that a 0.8 km radial catchment based on straight-line distance accounted for 40.7% of
observed trips, increasing to 68.3% of trips for a 2km catchment. When based on road
network distance performance deteriorated, with the 0.8 km and 2 km catchments accounting
for 32.9% and 65% of trips respectively. When the 2km catchments were restricted to
being non-overlapping (sometimes referred to as ‘cropped’), there was a further reduction in
performance, with only 57% of observed trips included. Furthermore, these average results
masked considerable variations at the individual station level, with a 2km buffer capturing
80-100% of trips for 34 stations, but only 0-20% of trips for seven stations.

2.4.2.2 Nearest station-based catchments

A number of studies have found that not all passengers choose to use their nearest station,
a phenomenon commonly referred to in the UK as ‘railheading’. For example, Debrezion,
Pels, and Rietveld (2007a) reported that 47% of passengers in the Netherlands did not
use their nearest station; Mahmoud et al. (2014) found that over 30% of cross-regional
commuters who accessed a station by car did not choose the station closest to their home;

and Chakour and Eluru (2014) observed that the nearest station was often not chosen, and

“The NRTS was a survey carried out by the Department for Transport to gather data on passenger rail trips in
Great Britain on weekdays outside school holidays. The London and the South East area was surveyed during
2001, with Wales, Scotland and the remainder of England surveyed in 2004 and 2005.
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in some cases not even the third closest station was selected. Using OD data from Dutch
Railway Company customer satisfaction surveys aggregated by postcode area, Givoni and
Rietveld (2014) ranked stations by the number of departures originating from each postcode
area. They found that out of 83 postcode areas, in 56 the first ranked station was the nearest,
but in 27 the first ranked station was not the nearest, and on average was 2.3km further

away.

Analysis reported in the PDFH, based on a large OD dataset of some 230,000 observations
obtained from passenger surveys carried out in the 1980s and 1990s, showed that the
likelihood of a passenger using their nearest station varied by journey purpose, with those on
business or holiday trips the least likely to use their nearest station, and commuters the most
likely. The surveys also revealed that around 50% of inter-city passengers did not use their
nearest station, compared with just 20% of travellers in the South East where the network is
very dense. Referring to the same research, Lythgoe et al. (2004) note that some parkway
stations have an extremely high proportion of railheaders, such as Birmingham International
at 92% and Bristol Parkway at 85%. Variation in realheading by station type has also been
reported by Blainey and Evens (2011), who ranked stations for each individual based on
access or egress distance and found that most passengers boarding at a Category A station
(a national hub), had at least one other station closer to their origin or destination, while
the vast majority boarding at a Category F station (small unstaffed) were using their nearest

station.

Blainey and Preston (2010) carried out an OD survey on the Cardiff~-Rhymney line in South
Wales, with the primary aim of comparing theoretical catchments with observed catchments
to inform the work on trip rate models discussed in Section 2.3.1. They found that only 53%
of trip ends were located within catchments defined by assigning census areas to their nearest
station based on theoretical road access time, with this improving to 63% when catchments
were constructed using the flow-specific method. They also experienced problems with the
catchment of some city centre stations, where low population densities resulted in large
census areas with shapes that meant the main shopping area was not assigned to the nearest

station, because the census area centroid was closer to another station.

2.4.2.3 Overlapping catchments

Several studies have produced visualisations of observed station catchments using geographi-
cal information systems, to explore the extent of catchment overlap. For example, Mahmoud
et al. (2014) produced approximate station catchments, shown in Figure 2.4, based on
observed choices by commuters in the Toronto area, Canada, and found ‘substantial overlap’
indicating that commuters living in the same locality make differing station choices. Fan
et al. (1993) generated plots of observed station catchments by determining the trip origin

furthest from the station for each 30 degree arc, and then joining the points together to
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create polygons representing each station’s catchment, and also found there was significant
overlap between them.
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FIGURE 2.4: Observed park and ride catchment areas in Toronto, Canada. Note: Reprinted

from ‘Park-and-ride access station choice model for cross-regional commuter trips in the Greater

Toronto and Hamilton Area’, by Mahmoud, M. S., Eng, P, & Shalaby, A., 2014, paper presented

at Transportation Research Board 93rd Annual Meeting. Image reproduced with permission
of the rights holder, SAGE Publications.

Adcock (1997) reported finding ‘major instances’ of station pairs having a common catchment
area, and other studies have examined the homogeneity of station choice within catchment
zones. For example, Desfor (1975) assigned census blocks to a particular station’s catchment
based on the majority observed choice of the commuters resident within each block, and if a
block did not have a majority choice it was assigned to an unallocated category. This method
resulted in a 71% correct allocation, and Desfor concluded that the ‘concept of homogeneous
non-overlapping market areas is a serious oversimplification’. Givoni and Rietveld (2014)
ranked stations by the number of departures originating from each postcode area, and found
that on average 71% of departures were from the top-ranked station and 18% and 9% were
from the second and third ranked stations respectively, again indicating that choice is not
homogeneous within zones.

2.4.2.4 Mode-specific catchments

It is intuitive to expect that station catchments will vary depending upon access mode, for
example the catchment for walk access will be considerably smaller than the catchment for
motorised vehicle access. For example, Blainey and Evens (2011) disaggregated access and
egress distances by main mode for the North East region and found that the average distance
was 1.6km for walk mode, 8.2 km for bus mode, and 11.6km for car mode. The catchment

for public transport access will reflect the routes that serve a particular station, as was found
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by Givoni and Rietveld (2014), where the presence of tram and metro lines clearly influence

the shape of station catchments in Amsterdam.

2.4.2.5 Catchments by station type

The geographic size and shape of station catchments will also differ based on the type of
station and its position within the rail network. Passengers travel further on average to
stations that offer inter-urban or inter-regional services, where the access journey is a smaller
component of the total journey, than they do to suburban stations that provide short services
to or from a major urban centre or connectivity to the wider rail network. Stations built
outside of urban centres with good road links that provide easy accessibility by car to mainline
train services, so-called parkway stations, are known to have the longest average access
distances (Lythgoe & Wardman, 2004). Some stations are particularly well-connected to the
rail network, providing direct services on several routes to many destinations, whilst others
offer the only access to the rail network for large geographic areas that have no rail service,
perhaps as the result of branch-line closure in the 1960s. In both cases these stations would
be expected to have larger catchments, for both access and egress journeys, than stations

that are poorly connected or in areas that are well served by a dense station network.

2.5 Does choice matter — are existing models good enough?

Having established that the catchment definitions used in the aggregate demand models are
unlikely to be a realistic representation of real-world station catchments, it is important to
consider the extent to which this deficiency might be impacting the ability of these models to

produce accurate demand forecasts.

The main source of information on the performance of station demand forecasts in recent
years is the ‘Station Usage and Demand Forecasting for Newly Opened Railway Lines and
Stations’ report produced by Steer Davies Gleave (2010). This was commissioned by the
Department for Transport, reflecting a general concern about the perceived poor performance
of station demand forecasts. Although the report sought to examine the 40 stations that
had opened since privatisation of the industry in 1997, demand forecast information was
only available for 27 stations. The modelling methodologies adopted for individual stations,
and for three lines, are shown in Figure 2.5 (Steer Davies Gleave, 2010, p. 15)°. Of the 16
stations or lines where the methodology was known, a ‘trip rate’ model was used in ten cases,
a mode choice (logit) model was the predominant approach in three cases, and a four-stage

strategic model was used in two cases. The trip rate approach clearly dominates, being used

>The Ebbw Vale line includes Ebbw Vale Parkway, Llanhilleth, Newbridge, Crosskeys, Risca & Pontyminster
and Rogerstone stations; Edinburgh Crossrail line consists of Brunstane and Newcraighall stations; Larkhall to
Milngavie line includes Larkhall, Merryton and Chatelherault stations; and the Vale of Glamorgan line includes
Llantwit Major and Rhoose stations.
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TABLE 3.1

SUMMARY OF DEMAND FORECASTING METHODOLOGY

New Station/Line

Methodology Used

Abstraction
modelled?

Exodgenous growth
modelled?

Extent of documentation

Alloa

No Information supplied

Unclear

Unclear

None provided

Aylesbury Vale Parkway

Trip rate and accessibility modelling (using HEXs)

Yes

Good

Chandlers Ford

Logit model, trip rate model and MOIRA

Yes

Good

Coleshill Parkway

Trip rate model and logit mode choice

Unclear

No description of demand modelling

Corby

Trip rate, MOIRA and station access model

Yes

Good

East Midlands Airport Parkway

GIS catchment analysis, elasticity based model &
airport mode share assumptions

Yes

Good

Ebbw Valley Line

Logit model and uplift for trip generation

N/A

Reasonable

Edinburgh Crossrail

No Information supplied

N/A

No description of demand modelling

Edinburgh Park

Trip rate and logit mode choice

Yes

Rather poor

Glasshoughton

Trip rate

Unclear

No description of demand modelling

Imperial Wharf

RAILPLAN strategic forecasting model

Yes

Good

Larkhall-Milngavie

4 stage land use model

Yes

Good

Laurencekirk

Trip rate

Partially

Reasonable

Liverpool South Parkway

Elasticity based model, airport accessibility
model, mode switch (logit) model

Yes

Good

Mitcham Eastfields

Trip rate

Yes

Good

Shepherds Bush

Trip rate

Yes

Good

Vale of Glamorgan Line

Trip rate

Unclear

Poor

Warwick Parkway

Parkway Access Model and Mode/Route Choice
models

Yes

Good

FIGURE 2.5: Summary of modelling methodology used to forecast demand for new stations.

Note: Reprinted, with highlights added to identify trip rate models, from ‘Station usage and

demand forecasts for newly opened railway lines and stations’, by Steer Davies Gleave, 2010,
p- 15. Reproduced under the Open Government Licence v3.0.

to assess two-thirds of the schemes. Detailed information about the nature of the trip rate
models is not provided in the report, although it is noted that they varied in complexity and
additional explanatory variables were present in some cases (and should therefore more
accurately be referred to as trip end models). Only one example of the method used to define
the station catchment is given, for Mitcham Eastfields, where the population centroids of

census Enumeration Districts were assigned to their closest station.

Table 2.2 compares forecast demand and actual demand for the reviewed stations, based on
data published in the Steer Davies Gleave report®. The bar chart in Figure 2.6 relates only to
the stations where a trip rate model was used, and shows the percentage difference between
actual and forecast demand. In only three cases was observed demand within 20% of the
forecast. The forecast was particularly poor for Glasshoughton, where observed demand
was 2.65 times higher; Edinburgh Park, where observed demand was 1.8 times higher; and
Aylesbury Vale Parkway, where observed demand was less than half that expected. The report
does suggest several reasons that might, at least partly, explain the poor performance for
these stations: no attempt was made to forecast demand generated by a leisure complex at
Glasshoughton; Edinburgh Park may have abstracted demand from South Gyle; and planned
housing development near Aylesbury Vale Parkway did not materialise due to the 2007-2008
financial crisis.

A more recent, and widely publicised, example of inaccurate station demand forecasts is the
new Borders Railway line in Scotland, which opened in 2015 with seven new stations. As

shown in Figure 2.7, the final scheme appraisal severely under-forecast demand at the three

5Note that Llantwit Major and Rhoose stations are combined; and Corby and Laurencekirk stations are
excluded because actual demand data was not available (they opened during 2009).
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New Station Forecast Actual Difference
Aylesbury Vale Parkway 29000 13066 -55%
Brunstane 129920 121758 -6%
Newcraighall 467600 176975 -62%
Chandlers Ford 290237 236145 -19%
Ebbw Vale Parkway 45858 252607 451%
Crosskeys 62982 67347 7%
Newbridge 82951 115733 40%
Risca and Pontyminster 105412 101624 -4%
Rogerstone 58087 71041 22%
Llanhilleth 37529 40967 9%
Imperial Wharf 437760 256000 -42%
Liverpool South Parkway 640652 465324 -27%
Mitcham Eastfields 179115 239040 33%
Shepherds Bush 922717 1219167 32%
Alloa 120000 335687 180%
Warwick Parkway 201000 238654 19%
Glasshoughton 50989 135279 165%
Llantwit Major + Rhoose 395650 401192 1%
Edinburgh Park 209619 382823 83%
Coleshill Parkway 119000 98903 -17%
Larkhall 276993 334015 21%
Chatelherault 48399 40922 -15%
Merryton 215191 99500 -54%

TABLE 2.2: Forecast and observed demand for new stations, produced from data published
in Steer Davies Gleave (2010).

Scottish Borders stations (Tweedbank, Galashiels and Stow), with actual demand in the first
12 months up to eight times higher than forecast, while over-predicting demand, to a lesser
extent, at the four Midlothian stations (Transport Scotland, 2017). There is only limited
information publicly available on the models used to generate these forecasts. It is known
that two methods were used: a stated preference survey’ of residents living near the line
(which was presumably used to estimate the switch to rail from other modes); and a trip rate
model that applied ‘generic trip rates’ to the ‘population within a defined area’ (Transport
Scotland, 2012). The stated preference approach produced a higher estimate than the trip
rate model and the mid point between the two models was used as the demand estimate.
The forecasts shown in Figure 2.7 are therefore higher than they would have been if the trip

rate approach alone had been used.

7Stated preference surveys elicit what individuals say they would do under hypothetical choice situations and
can be unreliable for forecasting purposes. See Section 3.4.1 for a more detailed discussion.
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The Borders Railway example serves as a good illustration of the potential implications of
inaccurate forecasts, as demand is a crucial driver of scheme benefits. The low benefit-cost
ratio of 0.5:1, which was revealed when the final business case document was released
(Transport Scotland, 2012), led the scheme to be described as ‘one of the worst-performing
major transport projects to be funded in recent times’ (Local Transport Today, 2013). Such a
low benefit-cost ratio could have resulted in the scheme not gaining approval, and appears to
have resulted in a less ambitious scheme than originally envisaged. For example, the length
of dynamic loop (where two trains can pass without having to stop) was reduced by 6.5 miles,
limiting the ability to run more services and potentially causing service reliability issues; and
the specified width of road bridges over sections of single track was reduced, precluding the
cost-effective provision of additional double-track in the future should growth in demand

warrant it (Spaven, 2017).

These findings confirm that the models being used to forecast demand for new stations are
in many instances not producing accurate forecasts, and in some cases the discrepancies
are so large that they could undermine the case for an otherwise viable scheme (due to
under-forecasting), or result in a new station being built that fails to deliver the expected
economic and societal benefits (due to over-forecasting). It is not possible to conclude that
the simplistic method of defining catchments is the primary cause of the poor predictive
performance of trip end models. However, if station catchments are not correctly defined,
then inappropriate weight will be given to other explanatory variables, such as service quality
measures, as drivers of trip generation, rather than the catchment population. By defining
more realistic catchments, the parameter estimates will be more robust, and the models will
be more transferable (Wardman & Whelan, 1999). If trip end models with greater geographic
transferability can be calibrated, then this increases the likelihood that an improved nationally
applicable model can be developed, building on the previous work by Blainey (2010) to
develop a national trip end model with deterministic catchments. This would reduce the
need for local solutions, which will inevitably vary in approach, robustness and performance.
Even if a model specific to a local context was considered desirable, the national model
would be available to act as a sense-check of the demand forecasts. In formulating an
appraisal framework for new local railway stations, Blainey and Preston (2013b) recognised
the shortcomings of the simplistic catchment definition methods and acknowledged that
station choice models are likely to produce more accurate catchments. These were not
incorporated into the appraisal procedures, due to their added complexity and the absence of
a calibrated station choice model for the whole country. However, the authors note that their
inclusion is crucial if the reliability and transferability of the framework are to be increased.

2.6 Conclusions

The number of passenger journeys made by rail is expected to continue rising in the years
ahead, potentially increasing 40% by 2040 (Network Rail, 2018), and the UK Government
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has recently set out an ambition of ‘reversing the historic contraction of the rail network’
with an emphasis on new local connections and stations that support housing development
or economic growth, or that address urban congestion (Department for Transport, 2017a).
There will, therefore, be a continuing need to assess proposals for new railway stations and
lines. A crucial part of this evaluation process is generating accurate demand forecasts, as
predicted station patronage is a key driver of the benefits that will determine whether or
not a scheme is considered viable. However, this chapter has shown that the aggregate
models that are most commonly used to forecast demand do not always perform well, and a
contributory factor could be the relatively simple way that station catchments are defined.
These do not represent the true nature of station catchments, and the implicit assumptions —
that catchments do not overlap and stations do not compete for passengers — do not hold
in reality. This suggests that passenger demand forecasting models might be improved if a
probabilistic station choice element could be incorporated into them. In a trip end model,
for example, this would allow the population in a zone to be weighted by the probability of
a particular station being chosen by a rail passenger in that zone, with each zone having a
probability for each competing station (see Figure 1.4). This would then allow a probabilistic
catchment for each station to be generated (see Figure 1.5). In a flow model, the population
in a zone could be weighted by the probability of a particular station being chosen, given the
journey destination. In such a model, each zone would have a probability for each competing
station, conditional on each journey destination. By incorporating more realistic station
catchments into these models they should become more transferable, enabling an improved
national model for GB to be developed. To achieve this goal, an appropriate model to forecast

station choice at the zonal level will be required.

The next chapter will consider the body of prior station choice research, reviewing the
modelling approaches adopted, the factors found to influence station choice, and previous
efforts to incorporate a station choice element into rail demand models. This review will
inform the subsequent research that will seek to develop station choice models and devise a

methodology for incorporating them into the aggregate rail demand models.






Chapter 3

Railway station choice modelling:
methods and evidence

3.1 Introduction

This chapter provides a comprehensive review of previous station choice research. It begins
with a brief history of prior research to set the scene (Section 3.2), before moving on,
in Section 3.3, to consider the theoretical basis of discrete choice models alongside their
application in the field of station choice modelling, including approaches to validation and
testing. Section 3.4 then looks at issues relating to obtaining and preparing data on observed
choice, as well as the approaches taken to define choice sets. The factors that might explain
observed station choice, how these have been selected and measured, and what influence
they have been found to have on decision makers, are discussed in Section 3.5. How station
choice models have been used in the context of rail passenger demand forecasting is then
considered in Section 3.6. Finally, the conclusions drawn from the body of previous work are

presented in Section 3.7.

3.2 A brief history of station choice modelling

The earliest published examples of station choice research date back to the mid 1970s in
North America. Liou and Talvitie (1974) modelled access mode and station choice in the
Chicago area of the Illinois Central Railroad using a sequential multinomial logit (IMNL)
approach which pre-dated the formal development of the nested logit (NL) model. Desfor
(1975) used binary probit and weighted linear regression to explore choice between station
pairs on the Lindenwold high-speed line (PATCO) - a rapid transit system predominantly
based around the park and ride concept which carries commuters into the Philadelphia
central business district.

27
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No further work in this area has been found until a study in Japan modelled main travel
mode, access mode and station choice before and after the opening of a new station on the
Yokosuka line near Tokyo (Harata & Ohta, 1986). This appears to be the first station choice
study to implement the NL model. In subsequent research, the NL model was adopted in
several studies of joint access mode and station choice (Davidson & Yang, 1999; Debrezion,
Pels, & Rietveld, 2009; Fan et al., 1993; Givoni & Rietveld, 2014) while the MNL model
has been used for modelling station choice alone (Adcock, 1997; Blainey & Evens, 2011;
Debrezion et al., 2007a; Kastrenakes, 1988; Mahmoud et al., 2014). Lythgoe and Wardman
(2002) extended a direct-demand model for parkway stations to include a station choice
element using nested logit and later enhanced this model by widening its applicability to
shorter journeys and by developing a form of cross-nested logit (CNL) model (Lythgoe et al.,
2004). In an unusual approach, Chakour and Eluru (2014) proposed a latent segmentation
model where the observations are split using binary logit into those assumed to choose the
station first or access mode first, with mode choice and station choice modelled using MNL

in the order determined by this segmentation.

Within the last few years researchers have begun to develop models using more complex,
open-form, discrete choice models which must be estimated using simulation techniques.
These include work by Chen et al. (2014) to develop a framework for modelling park and
ride station choice under uncertainty (or risk) and to model station choice specifically under
parking search time uncertainty (Chen et al., 2015); a random parameter mixed logit (ML)
model of park and ride lot choice (Pang & Khani, 2018); and an error components ML
model of station choice that accounts for the unobserved spatial correlation between pairs of
alternatives (Weiss & Habib, 2017). There has also been a willingness to consider alternatives
to the utility maximisation behavioural assumption that underlies the vast majority of discrete
choice models, with Sharma, Hickman, and Nassir (2017) developing models of parking lot
choice based on the random regret minimisation approach proposed by Chorus (2012).

In addition to academic research, models have been developed, usually by consultancy
firms, for use in central or local government transport models and as part of specific rail
development proposals. Examples in the UK include: a binary logit model for West Coast
Main Line track access assessment (MVA Consultancy, 2011); an MNL model to assess the
demand for and benefits of High Speed 2 (Atkins Limited, 2011); and incorporating a station
choice element into regional transport models (Fox, 2005; Fox et al., 2011). A summary of

prior station choice research is given in Table 3.1

3.3 Application of discrete choice models

The basis of discrete choice models is that an individual can choose from a number of
alternatives which are collectively known as the choice set. Three characteristics of the

alternatives are assumed: the decision maker must choose only one (i.e. they must be
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mutually exclusive); all alternatives must be included; and there must be a finite number of

alternatives?.

Discrete choice models are usually based on the assumption of utility maximisation, and
are then known as random utility models (RUMs). An individual obtains utility from each
alternative in the choice set and will choose the alternative that provides them with the
maximum utility. The researcher does not know the perceived utility of each alternative,
that is only known by the individual. The researcher attempts to measure the utility by
identifying attributes of the alternatives and/or of the individual. That part of the utility that
the researcher does not know is called the unobserved portion of utility and is treated as a
random (stochastic) component. The utility that an individual obtains from an alternative

can therefore be expressed using the following formula:
Uni = Vni + Eni» (31)

where U,; is the utility for individual n of alternative i, V,; is the utility measured by the
researcher, and ¢,; is the unobserved portion of utility. In practice V, which is known as
the representative or deterministic component of utility, will be a function consisting of the
selected attributes of the alternatives and the individual and their respective coefficients (or
parameters). The function is commonly linear-additive in parameters and the representative

utility for individual n of alternative i can be given by

K
VoiX, B) =D BiXini (3.2)

k=1

where X is a matrix of attributes and [3 is a vector of parameters of those attributes. The
parameters, if unknown, are obtained statistically, for example by maximum likelihood
estimation.

If faced with a choice set J then an individual will choose alternative i when:
U,;>U,; Vj#i. (3.3)

However, as there is an unknown component to the utility it is not possible to say for certain
what alternative an individual will choose, it is not deterministic. The probability of individual

n choosing alternative i is:

Pni :PrOb(Um' > Un] V] ;é l)
= PrOb(Vni + &, > Vn] + gnj V] ;é l) (3.4)
= Prob(epj— €, < Vi — Vi Vj #1).

For example, suppose an individual is choosing between two railway stations and the rep-

resentative utility of station i is 5 and station j is 4. Although station i has the highest

This introduction to discrete choice models, and the notation that follows, is largely based on Train (2009).
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observed utility, it cannot be assumed that the individual will choose this station as the
impact of unobserved factors on utility is not known. Station j would instead be chosen if its
unobserved utility is more than 1 unit greater than the unobserved utility of station i. The

probability of the individual choosing station i is therefore the probability that ¢; —¢; < 1.

Assumptions made about the characteristics of the unobserved portion of utility will determine
what form of statistical model is appropriate to calculate the probability of an individual
choosing a particular alternative. If the unobserved portion of utility is assumed to follow an
independent and identically extreme value (Gumbel) distribution (IIGD) then logit or NL
models are suitable. These are closed-form models where the choice probabilities can be
calculated exactly. For probit models the unobserved portion of utility is assumed to follow a
multivariate normal distribution, and for mixed logit it is assumed to consist of two parts,
one of which follows the Gumbel distribution and the other which follows a distribution
that is specified by the researcher. Both probit and ML models are open-form and choice

probabilities are approximated by simulation (Train, 2009).

3.3.1 Binomial and multinomial logit

Binomial logit is the simplest RUM-based discrete choice model which is used when there
are only two alternatives under consideration. Based on the assumption that the stochastic
utility component follows an IIGD, the probability of choosing alternative i over j can be
calculated using the following derived equation:

eVi

Pr(i) = (35)

eVi+eVi’
and as the sum of the probabilities for the two alternatives must equal one, the probability of
alternative j is:

Pr(jy = 1—Prg. (3.6)

The binomial logit model has seldom been used in modelling station choice, as in most
research the number of alternatives in the choice set exceeds two. However, it has been
applied in work carried out for the Office of Rail Regulation to assess applications made
by Open Access Operators to run services on the two main lines running between London
and Scotland (MVA Consultancy, 2011; Prior et al., 2011). These new operators planned to
provide certain stations with direct services to major destinations such as London where these
services did not currently exist. As part of a wider modelling framework a station choice
model was developed to assess the extent to which passengers might be abstracted from the
current ‘primary’ stations to these ‘secondary’ stations as a result of the service improvement.
Pairs of primary and competing secondary stations were identified and binomial logit models
used to forecast the proportion of passengers choosing each station in the pair under two
different fare structures (walk-up fare and advanced fare). The station (dis)utility was
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represented in the model by a single composite term: the GJT from the trip origin to the
destination station. The components of GJT were: weighted access time to departure station
by car; GJT obtained from MOIRA (which includes in-vehicle time, a frequency penalty, and
an interchange penalty); fare; and car park cost. A spread parameter? for the model was
estimated using data from the NRTS by taking the difference in station access time to a
primary station (Preston) and four nearby potential secondary stations, plotting this against
the percentage of passengers that chose the primary station, and then fitting a logit curve
(see Figure 3.1). The model observations were trips from each primary station obtained
from the NRTS, adjusted with an expansion factor to represent actual demand at the station.
Using this model, the probability of choosing primary station p over secondary station s can

be shown as:
e—YGIT,

e TGy 4 o—yGIT,’
where vy is the spread parameter. There are potential weaknesses with this approach as the
spread parameter calibration assumes that the observed choice behaviour can be explained
purely by differences in access distance and that the sensitivity of passengers to changes in
access distance will remain similar when the competing stations are offering direct services

on the mainline.

Percentage of Passengers Choosing Preston by Access Time
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FIGURE 3.1: Difference in access time between Preston and nearby stations (not on the

WCML) against percentage of passengers choosing Preston station, showing observed data

and fitted logit curve. Note: Reprinted from ‘Making better decisions. Assessment of aspirations

for track access on the West Coast Main Line’, by MVA Consultancy, 2011, p. 4.6. Reproduced
under Open Government Licence v3.0.

Most station choice studies have used larger choice sets, with many applying the MNL model.

This is an extension of the binomial logit model that allows choice probabilities for any

2In a model of this type where various cost factors are combined into a single GJT, it is usual practice to
incorporate a spread parameter which reflects the sensitivity of passengers’ choices to changes in GJT (or a
component of GJT). The proportion choosing each alternative will be split equally as the value of the spread
parameter approaches zero, and the proportion choosing the alternative with the lowest GJT will move towards
one as the spread parameter increases (Whelan et al., 2001). The spread parameter is entered into the model as
a negative value which ensures that a higher GJT corresponds to a lower utility.
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number of alternatives to be calculated. The probability of choosing alternative i from a

choice set of J alternatives is then given by the following equation:

Vi

eVi
j=1

The earliest station choice model to adopt an MNL approach was developed for New Jersey
Transit by Kastrenakes (1988). It was used to forecast the proportion of travellers from each
minor civil division® using each station in that division’s observed choice set, and to feed that
information into a mode choice model. Due to the lack of suitable software, the logit model
was transformed into a linear in parameters form that was then developed as a regression

equation.

A research project carried out at TCI Operational Research (formerly the British Rail Opera-
tional Research Unit), sought to develop a station choice model that could be incorporated
into the UK rail industry demand model, MOIRA, although no progress beyond this prelimi-
nary work has been publicly reported (Adcock, 1997). This is probably the most ambitious
piece of research to date in terms of the size of the dataset used to estimate an MNL model,
with some 230,000 detailed trip observations from the entire UK mainline network and Lon-
don Underground*. The only other study to approach this number of observations is Blainey
and Evens (2011) where some 114,000 trip ends covering the Wales and North East regions
of the UK were obtained from the NRTS. The Adcock research is unusual in considering
the entire passenger trip from the ultimate origin to the ultimate destination based on unit
postcode®, with both access and egress distance included as factors in the models. While
Blainey and Evens (2011) included distance from ultimate origin to destination station, most

other disaggregate studies have concentrated primarily on the access part of the journey.

In the Netherlands, Debrezion et al. (2007a) developed three MNL models based on different
approaches to defining the utility function, including a cross-effect and a translog function (see
Section 3.5.3 for more details); and in Canada the station choice of park and ride commuters
taking cross-regional trips in the Greater Toronto and Hamilton area was investigated, with
separate models calibrated for three market segments based on the type of station (subway
and/or commuter rail) considered to be within ‘reasonable reach’ of the commuter (Mahmoud
et al., 2014).

$Minor civil divisions are the primary governmental or administrative divisions of a county in many states of
the USA. In New Jersey these will refer to townships, cities, towns, boroughs and villages of varying population
size.

4The dataset was compiled from routine passenger surveys carried out in the late 1980s and early 1990s,
including the ‘Network South East and London Underground Origin & Destination Surveys’, the ‘InterCity Monitor’,
and the ‘Regional Railways Monitor’ (Association of Train Operating Companies, 2013).

°In the UK a unit postcode represents the most detailed spatial unit available from postcode data. For small
postal users (i.e. not business addresses), a unit postcode typically represents around 15 addresses, though it is
possible to contain up to 100 addresses in densely populated areas.
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An unusual approach was used to develop station choice models to assess demand for stations
on the planned high speed railway line between London and the West Midlands in the UK
(Atkins Limited, 2011). The models are not based on observed station choice data, either in
the aggregate or disaggregate, and parameters are not estimated for utility function variables
as part of model development. The station choice models use information from the PLANET
Long Distance (PLD) multi-modal model (which models long distance journeys above 50
miles by rail, air and car), and two local transport models, RAILPLAN (in London) and PRISM
(in the West Midlands). As an example, the London station choice model consists of the

following main steps:

1. The GJT from each non-London PLD zone® to each London strategic station (which
includes existing and proposed HS2 stations) is calculated using the PLD model with
established parameters/elasticities for in-train time, waiting time, boarding penalty

and a representation of access journey at the origin end.

2. The GJT from each of the strategic London stations to each RAILPLAN zone’ in London
is calculated using the RAILPLAN model.

3. The two GJTs are then summed to derive an end-to-end GJT from each non-London

PLD zone to each RAILPLAN zone, via each London strategic station.

4. An MNL probability equation is then used to calculate the share of demand that each
London strategic station will attract for each non-London PLD zone to RAILPLAN zone
pair. The (dis)utility for each alternative is the end-to-end GJT which is multiplied by
a negative spread parameter.

5. The shares are then aggregated into London PLD zones by weighting them using data on
the proportion of long-distance demand each RAILPLAN zone is expected to generate.
The result of the aggregation is the share of demand between each London PLD zone
and each non-London PLD zone that each London strategic station will account for.
This data feeds back into the PLD model.

This approach is fairly simplistic as it assumes that the only factor impacting station choice
is the end-to-end GJT, which does not include fare and is based on standard elasticities in
the PLD model, and there is no estimation or calibration based on observed station choice
behaviour.

5The PLD aggregates data into large zones, for example the City of Birmingham is a single zone and Greater
London is divided into 7 zones, and there are 238 zones in mainland GB. Each zone has a single centroid that
represents where ‘on average’ a traveller starts or ends their trip.

7RAILPLAN zones are much smaller than PLD zones, for example the central London PLD contains 493
RAILPLAN zones. RAILPLAN only considers public transport access costs.
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3.3.1.1 Assumptions of the MNL model

The key assumption that underlies the relatively simple and easy to understand closed-form
logit model is that the unobserved (random) components of utility of the alternatives are
independent of each other and have an identical (Gumbel) distribution. The distribution
assumption implies that the variance of the random components is the same across all
alternatives, and the independence assumption implies that there is no correlation between
the random components for any pair of alternatives. Based on a choice set of four alternatives
the IIGD assumption can be represented by a 4 by 4 covariance matrix:

alternative 1 2 3 4
1 o> 0 0 0
2 0 o2 0 0
, (3.9)
3 0 0 o2 0
4 0 0 0 o2

where the constant variance o2 appears on the diagonal and the covariance (correlation)

between each pair of alternatives is zero (Jones & Hensher, 2008).

As a practical example, consider a situation where a passenger assigns a higher utility to
stations with a staffed ticket office but this factor is not included in the representative utility
function. If several stations within a choice set had a staffed ticket office then they would
share a common unobserved factor affecting the utility of alternatives and the assumption
of independence would be violated. In another example, the choice of station might be
influenced by the time taken to find a parking space, and this factor is not accounted for in
observed utility. If the time taken shows little variation for some stations in the choice set
but varies greatly for others then the assumption of constant variance across the alternatives
would be violated.

Train (2009) notes that while the independence assumption may appear very restrictive, it can
also be considered the effective outcome of a well specified model, where the representative
utility is captured so well by the measured factors that any remaining random component of
utility is just ‘white noise’. However, if there is correlation present then the researcher must
either look for an alternative model, improve the specification of representative utility, or
accept that the model is ‘only an approximation’ and use it anyway.

The MNL model has two further assumptions. The first is that every individual responds to
attributes in the same way, known as response homogeneity. This means that the model is
unable to account for individual ‘taste’ differences that are due to unobserved characteristics
of the individual. For example, if a passenger chooses a station that involves a longer access
journey because the drive is more scenic or passes by their child’s school. The second is

that the variance and covariance of the random components of the alternatives are identical
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for all individuals. Consider a model where access distance to a station is included in the
utility function, acting as a proxy for unobserved travel time which is likely to be the real
determinant of utility. Depending on the access mode used by the individual (for example,
walk, cycle or car), the unobserved travel time will differ between individuals and its variance

might not be identical across individuals, thus violating the assumption.

3.3.1.2 Independence from irrelevant alternatives and proportional substitution
behaviour

As a consequence of the assumptions discussed above, the MNL model exhibits the indepen-
dence from irrelevant alternatives (ITA) property and displays substitution behaviour that
may not be realistic in some circumstances. The IIA property means that the ratio of logit
probabilities for any two alternatives, and therefore the odds of choosing one alternative
over another, remains the same irrespective of any other alternatives or their attributes. As
a consequence, if the probability of an alternative increases due to improved utility then
the increase in probability is ‘taken from’ the remaining alternatives in proportion to their
probabilities prior to the change. This is known as proportional substitution (Train, 2009).
For example, if there was a choice between three stations with logit probabilities of 0.4,
0.4 and 0.2 and the probability of station 1 increased from 0.4 to 0.6 due to an improved
access bus link, the probability increase of 0.2 would be taken two-thirds from station 2 and

one-third from station 3, with the new probabilities becoming 0.6, 0.27, and 0.13.

3.3.2 Nested logit

Due to the underlying assumptions of the MNL model, and the proportional substitution
behaviour implied by IIA, alternative forms have been sought that, to varying degrees, relax
these assumptions. One of the most popular is the NL. model which, as will become clearer
later, essentially consists of a set of linked hierarchical multinomial models. In the NL model,
choice alternatives that are a priori thought to have unobserved factors of utility that are
correlated are grouped together into sets known as nests. The theoretical basis of the model
is that each pair of alternatives in a nest has the same correlation of unobserved factors, but
there is no correlation between pairs of alternatives in different nests (Train, 2009). Each
nest exhibits the IIA property and proportional substitution behaviour, but IIA is relaxed
between nests, so that the ratio of probabilities of two alternatives in different nests can vary.
The NL model is therefore appropriate when the researcher can group alternatives in such
a way that ITA holds for each nest but not across nests (Train, 2009). The nest structure is
usually depicted using a tree diagram, where a branch represents a group of alternatives
and each alternative is a leaf on a twig. For example, Figure 3.2 shows four travel-to-work
modes grouped into two nests: public transport (bus or train) and car (drive alone or car

share). This structure implies that if bus was removed as an alternative, train would be a
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better substitute than either of the car modes, and the probability of train would increase

proportionately more than that of car share or drive alone.

/\

Car Public transport

T~ U

Drive alone Car share Bus Train

FIGURE 3.2: Mode choice in an NL model.

The degree to which the unobserved factors are correlated, and therefore the degree to which
the alternatives in a nest are substitutes for one another, is represented in the model by the
inclusive value (IV) parameter which is estimated during model calibration. This parameter
determines the pattern of substitution and the extent to which a change in the probability of
an alternative is ‘passed on’ to the alternatives in its nest rather than to alternatives in other
nests. The lower the IV parameter the less independent and therefore more correlated the
alternatives in a nest are, and the more they are substitutes for one another. With a lower
IV parameter, a change in the utility of an alternative will have a proportionately greater
effect on the probability of other alternatives within its nest rather than other nests. The
IV parameter can be different for each nest but must be between 0 and 1 for the model to
be fully consistent with RUM. If the IV parameter of a nest is 1, it indicates that there is
no correlation and the alternatives do not need to be grouped — they can be connected as
separate branches (direct to the root in a two-level model). If the IV parameter is 1 for all
nests then all the alternatives can be connected directly to the root of the tree, and the model
effectively collapses to a standard MNL model (Koppelman & Sethi, 2000).

It is important to note that the NL. model does not impose any behavioural assumptions about
the decision process, or the order in which an individual makes a decision. In the example
shown in Figure 3.2, there is no assumption that an individual first decides between car and
public transport and then decides between the applicable alternatives. The model is merely
a mathematical construct to relax IIA and IIGD assumptions in a specific manner (see, for
example Hensher, Rose, and Greene (2005); Hunt, Boots, and Kanaroglou (2004); Koppelman
and Bhat (2006); Preston (1991b)).8 It is not uncommon for researchers, including in the
field of station choice modelling, to make the mistake of assuming that the model imposes
behavioural assumptions. For example, Chakour and Eluru (2014) state that the NL model
‘imposes a hierarchy that is very hard to validate in the dataset’ and sought to overcome this
apparent limitation by developing a ‘behaviourally representative framework’ where decision

makers are initially split using a binary logit model component into one of two segments,

8However, note that in NL models that contain three or more levels the direction of change in the IV parameter
values between levels of the tree can indicate whether the ordering of the levels is appropriate. Depending
on whether the IV parameter at the top or bottom level of the tree is normalised to one, the IV parameters
should monotonically decrease or increase respectively when moving from the top to the bottom of the tree
(M. Ben-Akiva & Lerman, 1985). Williams (as cited in Boyce and Williams (2016)) concluded that this condition
allowed for the order of levels to be empirically tested, with models that fail to meet the condition rejected on
the basis of an inappropriate model structure.
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where either station choice or access mode is decided first. This paper is discussed further in
Section 3.3.2.3.

3.3.2.1 Nested logit probabilities

The probability of individual n choosing alternative i in nest B is given by the following

formula®:
eVl Ak ( > eVni/ M) A1

j€B
P, = chi . (3.10)

i (Z ean/Al)Al

=1 jeB;

However, it is easier to interpret the NL model if it is thought of as two modelling steps'®. At
the lower level the model predicts a series of conditional probabilities for each alternative,
conditional on the nest containing each alternative being chosen. Then, at the upper level,
the model predicts the marginal probability of each branch. The probability of an alternative
within a nest being chosen is then given by the product of the relevant marginal and condi-
tional probabilities. The probabilities can be expressed in a simpler way than Equation 3.10
by using two logit equations, but first the representative utility of an individual n choosing

alternative j in nest k, needs to be split into two components:
Vij = Wag + Vo) (3.11)

where W, includes factors that relate to nest k and are constant for all alternatives in nest
k (but vary between nests); and Vi includes factors that relate to alternative j and differ
between alternatives in nest k. A mechanism is also needed to link the information from the
lower (conditional) logit to the upper (marginal) logit. This is done by incorporating the
expected maximum utility derived from all the alternatives in a nest as an explanatory variable
in the upper model. The expected maximum utility is equal to the natural logarithm of the
denominator of the lower model (i.e. the log of the summed exponentiated representative
utilities for each alternative in the nest) and has several names, including IV, inclusive utility
and logsum (Hensher et al., 2005; Train, 2009). The marginal probability of individual n
choosing any alternative in nest B; can now be expressed as:
e Wik sk
Pp =—", (3.12)

k K
Z eWnutAi Iy
=1

The presentation of the nested logit probabilities provided here largely follows the notation of Train (2009)
10This relates to a two-level nested logit, more levels are possible
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and the conditional probability of individual n choosing alternative i given that an alternative

in nest By is chosen as:

)2 — ﬂ (3.13)
nilBk - Z eYnj/)Lk B .
JEBk
where:
Lye=1n Y el™, (3.14)
JEBy

I is the IV and A, is the IV parameter, referred to in the previous section, that is estimated

by the model. The probability of individual n choosing alternative i in nest B; is given by:

Py = ni|By, X Pan' (3.15)

3.3.2.2 Nested logit in station choice

Researchers who have used the NL model to analyse station choice have predominantly
chosen a two-level model with access mode at the upper level and station choice at the lower
level (Davidson & Yang, 1999; Debrezion et al., 2009; Fan et al., 1993; Givoni & Rietveld,
2014). For example, the nest structure adopted by Fan et al. (1993) is shown in 3.3, with
only a single choice available for walk access as the distance between stations indicated that
it was only plausible for a traveller to access their nearest station on foot. Some researchers
have attempted to produce models with station choice at the upper level and mode choice at
the lower level, but have rejected the approach as their models were not consistent with RUM,
due to the IV parameter being outside of its required bounds. For example, Debrezion, Pels,
and Rietveld (2007b) obtained an IV parameter of 2.02, while Fan et al. (1993) obtained
an IV parameter of 7.97. An IV parameter greater than 1 indicates that the model is only
consistent with RUM for some, but not all, possible values of the explanatory variables (Train,
2009). While Liou and Talvitie (1974) reported that station choice as the marginal logit was
their preferred model, this work pre-dated the formal development of the NL model and
did not correctly calculate IV to be consistent with RUM (the precise mechanism was first
identified by M. E. Ben-Akiva (1973) in his PhD thesis).

7 T

Walk Ca Transit

r
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FIGURE 3.3: Nest structure used by Fan et al. (1993).

Very few alternative nesting structures have been implemented. Harata and Ohta (1986)
investigated station choice before and after the opening of a new railway station and, on the
basis that this could affect the choice of mode for the main journey, they used a three-level

nested logit model with main mode at the upper level (bus or rail), followed by access
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mode and station choice at the lower levels of the rail branch. And in research to develop
an improved flow model to estimate demand for parkway stations, Lythgoe and Wardman
(2002) introduced a station choice element by modelling travel choices from each zone to
each destination using nested logit. In this model the choice to travel by rail or not by rail
(or not at all) was in the upper level and the choice of station, conditional on a rail journey
being made, was in the lower level (see Figure 3.4). A form of CNL model was subsequently
developed to address spatial correlation between stations (Lythgoe et al., 2004), and this
is discussed in Section 3.3.3.1. More information about the flow modelling approach can
be found in Section 3.6. These examples aside, prior station choice research has usually

assumed that the decision to travel by train has been made.

zone a to destination j

no rail journey
(not travelling
rail journey  or another mode)

aij aj akj

FIGURE 3.4: Nested logit structure used by Lythgoe and Wardman (2002).

In most research where NL has been used to model station choice, the same station alternatives
appear in each nest for each of the access modes. This appears at odds with the primary
advantage of the NL model — that it can potentially resolve substitution issues related to
ITA. Train (2009) notes that the researcher should approach the grouping of alternatives
into nests in terms of limiting the impact of IIA, by identifying alternatives where IIA either
does or does not hold. He also states that each alternative should be a member of only
one nest or subnest (for models with more than two layers). From a purely IIA perspective,
there is nothing to be gained by placing the same stations under each access mode. Rather
than creating distinctive groupings of alternatives, this approach creates multiple groupings
composed of the same alternatives, and if proportional substitution is an issue for one nest
it is likely to be an issue for all the nests. That said, grouping stations by access mode can
be expected to result in improved models compared with multinomial logit, as correlations
that exist between unobserved factors common to each access mode can be accounted for,
resulting in better fitting models and less biased coefficients. This is confirmed by previous
studies which have reported IV parameters that lie between 0 and 1 and that are significantly
different from O or 1, indicating that correlation exists and the nest structure is appropriate
and consistent with RUM. The degree of correlation between unobserved factors within a
nest can be obtained by using the equation 1 — A, and calculated correlation values'! for

reported IV parameters are shown in Table 3.2. They are in the moderate to low range.

"It is not quite a straightforward as this, but this is a good indication (Train, 2009).
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Paper IV Parameter Correlation Notes

Harata and Ohta (1986) 0.641 0.359 Before new station
Harata and Ohta (1986) 0.740 0.260 After new station
Fan et al. (1993) 0.414 0.586

Debrezion et al. (2009) 0.614 0.386

Givoni and Rietveld (2014) 0.546 0.454

TABLE 3.2: Reported IV parameters and calculated correlation for nested logit station choice
models.

While the nesting structure adopted in prior station choice modelling work has produced
models that perform better than standard MNL, their inability to deal with inappropriate
substitution behaviour, for example caused by location in space, suggests that an alternative
approach might be warranted. It may be that addressing substitution behaviour is more
critical when developing models that are to be used for planning purposes to predict demand
at a new station, and abstraction from existing stations, than it is for studies that are primarily
concerned with examining the influence of explanatory factors on station choice. The specific

issue of spatial choice is discussed in Section 3.3.3.

3.3.2.3 A latent segmentation approach

As mentioned in Section 3.3.2, Chakour and Eluru (2014) incorrectly state that the NL model
‘imposes a hierarchy that is very hard to validate in the dataset’ and go on to suggest a latent
segmentation approach to overcome this apparent limitation. In their proposed framework
there are assumed to be two decision sequences taking place — either station choice first or
access mode first. These two decision sequences are referred to as segments, and observations
are split between the segments by the model during estimation based on a range of factors,
including socio-economic variables. The proposed model framework consists of three model

components, which are estimated simultaneously using maximum likelihood:

* The latent segmentation component — this is a binary logit model that determines the

order of mode choice and station choice.
¢ Mode choice — an MNL model.

e Station choice — an MNL model.

As the latent segmentation component is a RUM-based binary logit model, the implied
assumption is that individuals will make a choice, determined by utility maximisation, of
the order in which they are going to make a choice of access mode and station choice. The
authors describe this as a ‘behaviourally representative framework’ that is preferable to the
NL model, but present no behavioural research to support this. They give a couple of possible
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examples, such as a worker with primary access to a car who may choose the car as access
mode and then choose a station based on car park availability; and someone living very
close to a station, who may choose that station first and then choose to walk or go by public
transport in poor weather. While these examples suggest an order in which the mode and
station decisions might be made, that does not equate to an individual making a binary

choice of that order based on utility maximisation.

This solution to the so-called ‘imposed hierarchy’ of the NL model is an approach that appears
difficult to justify behaviourally. The authors have adopted a model form developed by
Waddell et al. (2007) that was concerned with whether household residence is decided
before or after the choice of workplace, without making a critical assessment of whether
the behavioural assumption remains valid in an entirely different choice context. It is much
clearer that an individual or household may indeed weigh up the utility arising from the order
in which these two decisions are made. The authors report that the latent segmentation model
had a lower Bayesian information criterion (BIC) (11,288.90) than separate sequential models
for station choice conditional on mode choice (13,094.65) and mode choice conditional on
station choice (12,437.51). However, no information on the nature of the sequential models
used in these comparisons is provided. In particular, it is not clear that they were RUM-

compliant nested logit models, which would have been the most appropriate benchmark.

3.3.3 The spatial choice problem

By the very nature of the human involvement in deciding where stations are located, it is
extremely unlikely that they are distributed randomly in space or on the access network.
Certain stations will be closer to some stations than others and, ignoring all other attributes of
the stations, spatial correlation will be present. Spatial correlation might also occur between
attributes of stations (whether they be observed or unobserved) as it is likely that they will be
more similar when stations are closer together. If station A is closer to station B than station
C it would be a reasonable expectation that station B is a better substitute for station A than
station C. In the context of discrete choice models, if spatial correlation is present then the
assumption of no correlation in unobserved utility between alternatives will not hold, unless

it can be overcome with the model structure or represented in the observed utility.

Consider a scenario where there is a choice between three stations as shown in Figure 3.5(a),
where the probability of an individual from origin O choosing one of two nearby stations A or
B is 0.4 and of choosing more distant station C is 0.2. Assuming that A and B are near perfect
substitutes for each other, if B was closed the probability of choosing A would be expected to
increase to 0.8, with the probability of choosing C unchanged, as shown in Figure 3.5(b).
However, an MNL model would allocate station B’s probability proportionately between
stations A and C resulting in the probability of choosing C rising from 0.2 to 0.33, as shown in
Figure 3.5(c). In this example, the unobserved utilities of A and B are highly correlated due
to their location in space; they exhibit spatial correlation. If an NL model was constructed to
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limit the impact of IIA, a spatially-based grouping might be considered, with A and B in one
nest and C in another, as shown in Figure 3.6.

FIGURE 3.5: IIA substitution behaviour — the effect of spatial correlation.
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FIGURE 3.6: A possible method of nesting stations to address the impact of spatial correlation.

The issue of spatial correlation has been largely ignored in the station choice literature.
Discrete choice models that are suitable when considering alternatives that do not have a
spatial element (for example, mode choice) have been applied to railway stations that clearly
are located in space; and studies that have used NL have placed the same stations in each
access mode nest, which does nothing to address the spatial choice problem. While there are
many examples of NL being applied to model spatial choice in a variety of other research
fields, this does require the researcher to divide continuous space into discrete clusters of
space. This is difficult to do in a manner that is justifiable and not arbitrary, particularly if
the model is to be transferred to a different area from the one on which it was calibrated.
Furthermore, the assumption of equal substitutability within each nest remains (Pellegrini &
Fotheringham, 2002). Only two prior studies have considered the issue of spatial correlation
in the context of station choice, and these both adopted alternative approaches. In the first,
Lythgoe et al. (2004) incorporated a CNL station choice component into a direct demand
model used to forecast the number of trips between station pairs. This method is discussed
in section 3.3.3.1, following an introduction to the generalized nested logit (GNL) model of
which CNL is a restricted case. In the second study, Weiss and Habib (2017) developed an
ML model that specified a correlation between each pair of stations based on the distance

between them, and this is considered in more detail in Section 3.3.4.

3.3.3.1 Generalized nested logit

The NL model is the simplest of the generalised extreme value (GEV) group of models which
relax, to varying degrees, the assumption of no correlation between unobserved utility. This
group also contains models that allow an alternative to be in more than one nest, enabling

more flexible and complex substitution patterns to be represented. An example of why this
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may be important is the mode choice NL model shown in Figure 3.2. While car share would
be expected to have unobserved attributes in common with car, this may also be true of
the public transport modes. For example, car share also suffers from lack of travel time
flexibility. If car share could be placed in both the car and public transport nests the model
could account, differently, for correlation with car and with bus and train (Train, 2009).
A number of models with these overlapping nests have been separately specified, such as
paired combinatorial logit (PCL) and CNL, but these can be considered restricted cases of
the GNL model proposed by Wen and Koppelman (2001).

In the GNL model'? an alternative can be present in a nest to varying degrees determined by
an allocation parameter which has a value between zero (alternative not in nest at all) and
one, where the sum of allocation parameters for each alternative must equal one. Each nest
has a logsum (or dissimilarity) parameter that indicates the degree of independence between
alternatives within a nest, where higher values indicate greater independence and lower
correlation, as with the NL model. The logsum parameters should have a value between zero
and one to be consistent with RUM. The correlation between alternatives within a nest, and
the degree to which they are substitutes for one another, is a function of both the logsum
and the allocation parameters, with correlation increasing as the logsum parameter reduces
and the allocation parameter increases. The utility, logsum and allocation parameters are

estimated simultaneously, and the probability of individual n choosing alternative i is given

by:
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where j € Ny, is the set of alternatives that are members of nest k; a; is the allocation
parameter which determines the portion of alternative i assigned to nest k; and uy is
the logsum parameter for nest k. The first component of the product is the probability
of alternative i being chosen from amongst all alternatives that are members of nest k,
conditional on nest k being chosen (P;;). The second component of the product is the
probability of nest k being chosen from amongst all nests (P;). The probability of individual

n choosing alternative i can therefore be re-written as:
Py =) Py % Pr. (3.17)
k

By imposing constraints on the parameters other GEV models can be specified using the GNL
model. For example, in the CNL model the logsum parameters are constrained to be equal

and in the PCL model the allocation parameters are constrained to be equal (to one).

As mentioned in the previous section, Lythgoe et al. (2004) used a form of CNL in the station

choice component of a direct demand model. This model was calibrated on inter-urban rail

12This explanation of GNL and the notation used is based largely on Wen and Koppelman (2001).
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journeys greater than 40 km between pairs of stations in Great Britain. A full discussion of
the direct demand model is provided in Section 3.6, and only aspects of the model relevant to
addressing spatial correlation are considered here. The CNL model replaced a NL model used
in earlier research (Lythgoe & Wardman, 2002), specifically to address spatial correlation
between stations. The model allows the proportion of journeys at a new station that are
abstracted from existing stations, rather than newly generated, to be higher the closer the
new station is to its competitor stations. In the direct demand model resident population
is assigned to 16 polygonal zones generated around each origin station. A set of up to 15
competing stations is defined for each origin station, and this forms the choice set for each
origin station zone. The dependent variable in the model is the number of journeys by rail
between origin station i and destination station j. The population of each zone of origin
station i is weighted by the probability of travelling from that zone (a) to destination station
j (conditional on the decision to travel by rail from a to j) and then summed for all zones.
In the station choice component each station i is nested with each of the other competitor
stations k, with i apportioned across the nests by the allocation parameter a and with k fully

allocated to the nest. The nest structure is illustrated in Figure 3.7.

The probability of travelling from zone a to destination station j via origin station i is given

by the following equation:

1
1 Vi )"
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where Va[ i ]j is the utility of travelling from zone a using rail from either station i or station k
(a ‘choice pair’) to station j; vy(q) is the dissimilarity parameter between station i and station
k (the choice pair) given that the journey starts at zone a (i.e. the degree to which i and
k are substitutes given zone a); u is the dissimilarity parameter (to be estimated) between
choices of choice pairs (i.e. the degree to which choice pairs are substitutes); and ay, is
an allocation parameter to distribute the probability of station i to each of the choice pair
nests. The first component of the product is the probability of station i being chosen from
nest [,l{], conditional on that nest being chosen. The second component of the product is the
probability of nest [,l(] being chosen from amongst all choice pairs [,l(] Vk #1.

The allocation and dissimilarity parameters were ‘part calculated’ prior to estimation of the
direct demand model. A logit form was used for the allocation parameters:

u
L

W (3.19)
k

Qi =
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zone a to destination j
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FIGURE 3.7: The cross-nested logit structure for origin station choice adopted by Lythgoe

et al. (2004) showing utility notation. For clarity only the nests with respect to station i

and four competing stations (k; to k,) are included, with a; , representing the allocation
parameters.

where L, is the road distance between station i and station k and 6;, is a parameter that

was tested at different values. The following form was used for the dissimilarity parameter:

2Ty )¢
V; = —— ) 3.20
ik(a) (Tai + Tak + Tik u ( )

where T,; is the road journey time between zone a and station i; T, is the road journey
time between zone a and station k; Ty is the road journey time between station i and
station k; and ¢ is a parameter to be estimated. If stations i and k were adjacent to each
other then v;,) would be close to zero, indicating a high degree of spatial correlation and
substitutability.

The direct demand model was estimated with the origin station choice component taking
either the MNL or CNL form. The best fitting CNL model marginally improved model fit
compared to MNL, with adjusted R? increasing from 0.6087 to 0.6108. This model specified
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0;; as zero, which would be equivalent to defining the allocation parameter as'®:
1\
ar=(—1, 3.21
ik ( 15 ) ( )

which would allocate the same proportion of station i to each of the choice pair nests. This
seems counter-intuitive as a negative 6; would be expected, causing a greater portion of
station i to be allocated to the nests of nearer competitor stations than those further away,
thus allowing greater competition between station pairs that are closer to one another. Indeed,
Lythgoe (2004) notes that ‘the allocation parameters should probably have been tuned to
differentiate more effectively between the effects of different competing stations’.

The validation and testing of the CNL approach was limited to forecasting flows to London
and Edinburgh from two hypothetical new stations located close to Leeds (identified as
Leeds West and Leeds South) and examining the effect on existing stations (Lythgoe, 2004).
This analysis found that while the proportion of journeys from the new stations that were
abstracted from existing stations was broadly similar using both the MNL and CNL approaches,
the proportion abstracted from the nearest competing station (Leeds in the case of Leeds
West, and Wakefield in the case of Leeds South) was increased in the CNL model. However,
these findings are of limited value as the forecasts and abstraction effects cannot be verified.
It would have been more informative to apply the models to several recently opened stations

that did not form part of the calibration dataset.

The approach adopted by Lythgoe et al. (2004) is unusual as the station choice model is not
calibrated against observed choice. It forms one component of a direct demand model where
the dependent variable is the number of journeys made between each station pair (Q;). This
simplifies the model estimation as for each Q; only the probability of origin station i being
chosen to travel to j for each origin zone is considered (this weights the population of each
zone which is then summed for all zones). Furthermore, the choice set is defined at the origin
station, and is therefore the same for each origin station zone. The difficulties in adopting
this approach for a station choice model calibrated against observed choice where choice
sets are defined at the individual level, and when it is to be incorporated into an aggregate

demand model with zones defined at high spatial resolution, are discussed in Section 6.2.1.

3.3.3.2 Bespoke GEV models

It is possible for a researcher to develop new GEV models to meet specific research needs by
following a generation process developed by McFadden (Train, 2009). An example of this
in the realm of spatial choice is the Generalised Spatially Correlated Logit (GSCL) model
developed by Sener, Pendyala, and Bhat (2011). In this model the degree of spatial correlation
is represented by a function of a vector of attributes that defines the spatial relationship

between all pairs of alternatives. They suggest a variety of variables that might be included

13Assuming 15 competitor stations in the choice set.
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in the vector, although in a residential location choice study to test the approach only the
distance between each pair of alternatives proved to be statistically significant. They found
that the model was able to capture declining correlation effects as the distance between
alternatives increased, indicating that a model of this form may be appropriate to model

station choice.

3.3.3.3 Addition of an accessibility term

An alternative, and much simpler, approach to deal with spatial correlation that has been
applied in other research fields is to include an accessibility term within the MNL model.
This term is a measure of the accessibility of an alternative to all other alternatives within
a choice set and can take a variety of forms. It is often a Hansen-type measure, where the
distance between alternatives is weighted by a size-based attraction variable (e.g. population).
As the term includes information from other alternatives the IIA property no longer holds
and the model is able to capture competition (or agglomeration) effects. Probably the
most enduring research of this nature was carried out by Fotheringham in the 1980s with
the development of the competing destinations model (CDM), primarily based on studies
of migration and consumer store choice (see Pellegrini and Fotheringham (2002) for a
comprehensive review). More recent applications include incorporating two accessibility
variables in destination choice models to account for agglomeration and spatial competition
effects separately (Bernardin, Koppelman, & Boyce, 2009); and using accessibility terms to

account for spatial competition in workplace choice models (Ho & Hensher, 2016).

The following form of the accessibility term is suggested by Fotheringham:

0

1 W,

i = M—1Zk:djk , (3.22)

ki

where M is the total number of k alternatives for individual n at origin i, W is a weight (usually
size-based, for example, population), d is the distance from alternative j to alternative k,
and 0 a parameter to be estimated. A large value of a,; indicates that an alternative is in
close proximity to other alternatives, and vice versa. If 8 < 0 then alternatives that are more
isolated will have a higher probability of being chosen and alternatives closer together will
have a lower probability. Conversely, if 6 > 0 then more isolated alternatives will have a
lower probability and alternatives closer together will have a higher probability*. If 6 = 0
then the model is the standard MNL. The accessibility term can be included directly in the

utility function, and Fotheringham suggests a logarithmic transformation which would imply

14This relationship does, however, rely on the numerator (W) always being larger than the denominator (d) in
the accessibility function shown in Equation 3.22.
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that the utility gained from choosing alternative i increases or decreases (depending on the

sign of 0) at a decreasing rate as a,; increases'>.

As a result of introducing this term into the model, the IIA property is circumvented, to an
extent, as the utility of an alternative is now dependent on a function that is determined by the
location and ‘size’ of other alternatives in the choice set. Therefore, if a set of alternatives all
have identical observed utilities (V;), the probabilities are no longer bound to be equal. The
behaviour of the model is illustrated in Figure 3.8, where the observed utility of alternatives
A, B and C for an individual at origin O is assumed to be equal, the size weight is assumed
to be constant and the distance between A and B is 1 unit and between B and C is 2 units.
Figure 3.8(a) shows the probabilities for the standard MNL, 3.8(b) the probabilities for the
CDM when 6 = —0.5, and 3.8(c) the probabilities of the CDM when 6 = +0.5. As C is more
isolated, when 6 is negative its probability increases (competition effect), and when 0 is

positive the probabilities of A and B increase (agglomeration effect).

P(0.31)

(]
O

a) Multinomial Logit b) CDM 0 = —0.5 ¢) CDM 0 = +0.5

FIGURE 3.8: Effect of the CDM on choice probabilities.
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FIGURE 3.9: Behaviour of the CDM when a new alternative is added, compared to standard
MNL.

However, it is important to note that the CDM is not entirely free of IIA and it does not result
in fully flexible substitution patterns. If the V; of an alternative changes, the model will still
apportion the resultant change in probability proportionately across the other alternatives, as
there has been no change in the accessibility term. However, the IIA property is now relaxed
when an alternative is added to or removed from the choice set (and if the size weighting
were to change), as the accessibility term will alter, and in these circumstances the ratio of
probabilities of two alternatives is no longer constant. With a negative parameter, if a new
alternative is added to the choice set the probability of alternatives with a high accessibility

15The requirement for a logarithmic transformation also has a theoretical basis arising from the term being
considered a weight on the utility function in Fotheringham’s hierarchical choice rationale for the CDM (see
discussion later in this section).
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term (in close proximity to other alternatives) will be reduced more than those with a low
accessibility term (more isolated from other alternatives). This is illustrated in Figure 3.9,
where a new alternative D is placed equidistant between A and B. In Figure 3.9(a), the
standard MNL model, the probabilities of A, B and C are all reduced by the same proportion.
However, in Figure 3.9(b), a CDM where 6 is —0.3, the probability of C remains unchanged
and the probabilities of A and B are reduced due to a competition effect. This suggests that
incorporating an accessibility term of some form into an MNL station choice model might

have the potential to forecast differential abstraction effects.

A potential concern with the CDM, in common with other models that include an explicit
measure of dis(similarity) between alternatives in the utility function in order to circumvent
the IIA property, is that it may not be consistent with the utility maximisation paradigm of
consumer behaviour and the assumptions that underlie RUM models. These include the
regularity condition, which requires that the probability of choosing an existing alternative
should not increase if new alternatives are added to the choice set. As a consequence, in
a RUM-compliant model the difference in utility between any two alternatives in a choice
set should not be dependent upon the attributes of other alternatives or their existence
(Hess, Daly, & Batley, 2018). Although attributes of alternatives (j # i) are not directly
included in the utility function of i, because the accessibility term represents the average
weighted distance of an alternative from all other alternatives it is necessarily dependent upon
the spatial location and ‘size’ of the other alternatives in the choice set, and the regularity
condition is therefore violated (a consequence acknowledged by Pellegrini and Fotheringham
(2002)).

The implications of a random utility-based model not being consistent with RUM are difficult
to determine as there is limited literature on the subject. The benefits of a RUM-compliant
model are generally framed in the context of its foundation in economic theory supported by
substantial empirical evidence (for example, see Hess, Beck, and Crastes dit Sourd (2017)
and Hess et al. (2018)). Hess et al. (2017) emphasise the potential problems when non-
compliant models are used to calculate economic measures such as willingness to pay or
the value of time, and imply that the issue may be less important when models are used in
forecasting; although Hess et al. (2018) note that RUM provides the justification for assuming
that the observed (past) behaviour of individuals will continue in the future. Hess et al.
(2018) also make an assessment of the theoretical RUM-consistency of a range of model
types and their practicality for deriving economic measures and forecasting. They focus on
models developed to address the perceived behavioural ‘anomalies’ of utility maximisation
and do not specifically address the CDM, but they state that models which attempt to capture
correlation effects through observed utility, for example to capture spatial overlap of links in
models of route choice, are unlikely to be consistent with RUM. The CDM has similarities
with these models, as well as the universal (or ‘mother’) logit model in which attributes of
competing alternatives enter the utility function of each alternative through so-called cross-
effects. McFadden and Train (2000) note that the ‘mother’ logit model ‘is not guaranteed to
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be consistent with RUM’.

o l— cluster &

° destination j

FIGURE 3.10: Demonstrating hierarchical destination choice. Note: Reprinted from ‘Mod-

elling hierarchical destination choice’, by Fotheringham, A. S., 1986, Environment and

Planning A, 18(3), 401-418. Image reproduced with permission of the rights holder, SAGE
Publications.

Hunt et al. (2004) consider that researchers who use model adjustments of this type should
‘either demonstrate that their model is consistent with random utility theory [or] describe
the different behavioural assumptions associated with their model’. Fotheringham (1986)
suggests that including the accessibility term in the utility function can be justified on the
basis of utility maximisation theory in some circumstances. For example, in the case of a
retail outlet that is not meeting the needs of a consumer, utility might be gained by having
other stores nearby (in which case 8 would be positive). Recognising that this would not
always be a justifiable approach, Fotheringham also proposed a behavioural rationale that
assumes individuals use a ‘hierarchical information-processing strategy’. When faced with
many spatial alternatives to choose between individuals will ‘cognize’ them in clusters which
are evaluated first before an alternative is chosen (see Figure 3.10). In effect there is an
unobserved nested hierarchy that avoids the need for the researcher to impose one. It is
hypothesised that individuals will underestimate the size of large clusters and the number of
alternatives within them, and therefore select them less often than expected. Consequently,
alternatives within large clusters are less likely to be chosen. Destinations with relatively
high accessibility (close to many others) are more likely to be in large clusters and therefore
less likely to be chosen; while isolated destinations are more likely to be in small clusters and
therefore more likely to be chosen. The parameter 6 is therefore expected to be negative, with
the likelihood of a destination being chosen reducing as its accessibility increases (hence the
model is known as the competing destinations model). Pellegrini and Fotheringham (2002)
describe the CDM as a generalisation of MNL where the utility function of each alternative is

weighted to reflect the probability of that alternative being evaluated, with the model taking
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the following general form:

exp(V,;)L.;(j € G)
Pnij: — P nij nl] (3.23)
> exp(Vy)Lyi(k € G),
k=1

where L,;(j € G) is the likelihood that alternative j is in individual n’s chosen cluster G. The
likelihood function proposed by Fotheringham is the accessibility term shown in Equation

3.22, which can be added directly to the utility function as a logarithmic transformation:

eXp(Vnij) X agij exp(Vm-j +1In agij)
i = — =— . (3.24)
>, exp(Voi) X affik 2. exp(Vy; +1n ar?ik)
k=1 k=1

3.3.4 More complex models

Alternative discrete choice models are available that, by making different assumptions about
the distribution of unobserved utility, can represent any pattern of substitution and, unlike
MNL and NL, account for random variation in taste. With reference to the covariance matrix
shown in Equation 3.9, in these models the variances on the main diagonal are not assumed
to be identical, and the off-diagonal covariances are no longer constrained to zero. However,
this increased flexibility comes at a cost. The models are more complex to implement and
interpret and the choice probabilities usually have to be approximated by simulation. There

has been only limited application of these model types in prior station choice research.

3.3.4.1 Probit model

In the multinomial probit model, the random components of utility are assumed to follow a
multivariate normal distribution with a mean vector of zero. The probability of individual n
choosing alternative i from a choice set of J alternatives is an integral given by the following

equation:

Pm‘ = Prob(Vni + Eni > Vn] + Snj V] 75 l)
o (3.25)
= I(Vni +Ep; > an + €nj V] 7é l)¢(8n)d€n:

where I(.) is an indicator function of whether the bracketed statement is true, and the integral
is over all values of ¢,,, and ¢ is the cumulative distribution function of the standard normal
distribution (Train, 2009). A derivation of the model is possible that enables coefficients to
vary randomly by individual, allowing for taste variation. However, it is only suitable if the
assumption that the random coefficients follow a normal distribution holds, which necessarily

implies that the coefficients will be positive for some individuals and negative for others
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(Train, 2009). This may not be an appropriate assumption for station choice models as it
implies, for example, that some individuals will have a positive coefficient for access time and
some will have a negative coefficient for service frequency. The multinomial probit model can
also represent any substitution pattern, which can be accomplished through estimation of a
full covariance matrix (although Train (2009, p. 109) notes that this ‘renders the estimated
parameters essentially uninterpretable’), or by the researcher imposing constraints on the
covariance matrix to enable a desired substitution pattern (although this is far from being
a straightforward procedure). Greene (2012, p. N-465) notes that the multinomial probit
model is ‘extremely difficult to estimate [and the] difficulty increases greatly with the number

of alternatives’. This is especially the case if the covariance matrix is not constrained.

Desfor (1975) used a probit model but made the simplifying assumption that commuters only
considered the two lowest cost stations for the census block where they resided, determined
using a non-stochastic trip cost function consisting of distance, fare and parking cost. This
allowed binary probit models to be estimated for the pair of lowest cost stations for each
census block, with the difference in trip cost the only explanatory variable. While the models
were reported to correctly predict the choices made by 88% of commuters, only those who
actually chose one of the two highest utility stations (80% of the sample) could be included
in the validation. This is likely to have enhanced model performance as the remaining 20% of
cases were arguably the more difficult ones to predict. Furthermore, the model’s usefulness
for forecasting is limited, as it is impossible to make an a priori assessment of which travellers
would choose one of the two lowest cost stations.

3.3.4.2 Mixed logit

It has been suggested that the mixed logit model has the ‘flexibility of probit [while] keeping
part of the simplicity of logit’ (Munizaga & Alvarez-Daziano, 2001). As with probit, ML can
represent any substitution pattern and can account for random variation in taste. The key
feature of the model is that unobserved utility is represented by two components — one that
is assumed to be IIGD (as in logit) and another that can follow any distribution and allows
for correlation and heteroscedasticity (non-constant variance) across alternatives. This can
be expressed in the following equation:

Unj = an + [T)nJ + Enj], (326)

where n,; represents the additional random term which depends upon parameters and
observed variables relating to alternative j and individual n, and the square brackets denote
the stochastic (unobserved) portion of utility. The usual form of the ML probability is as
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follows:

ﬁ/xni
Py = f ——— | £(B)dB, (3.27)
Zeﬁ/xnj

j=1
which is the weighted average of the logit formula at different values of 3, with the weights
provided by the density f () (Train, 2009).

The ML model can be interpreted in a number of ways, which are equivalent but affect the
way the model is specified. The ‘random parameters’ approach allows some or all of the
parameters to vary by individual, from a distribution chosen by the researcher. Utility is
specified in the same way as with the MNL model, except the vector of coefficients is now
able to vary by individual. The ‘error components’ approach is useful when the researcher
is seeking to achieve a certain substitution pattern and the primary aim of the model is

prediction. In this case the utility for individual n of alternative j can be expressed as:
Unj = anj + [annj + é‘nj], (328)

where x,; and z,; are vectors of observed variables relating to individual n and alternative
7, B is a vector of fixed coefficients and p is a vector of random terms with zero mean that
depend upon individual n. The pattern of correlation in unobserved utility, and thus the
substitution behaviour of the model, is determined by the variables that are introduced
into z,;. If p is zero for all n then this becomes the standard MNL model exhibiting the IIA
property (Glasgow, 2001; Train, 2009).

There has been limited use of the ML approach in station choice modelling, with only
three recently published examples found. Chen et al. (2014, 2015) and Pang and Khani
(2018) developed models based on the random parameters interpretation, with the former
investigating station choice under uncertainty (using a non-linear utility function); and the
latter modelling the choice of park and ride lot by transit users. Weiss and Habib (2017)
used the error components interpretation to obtain non-proportional substitution patterns by
specifying correlation between pairs of stations based on the distance between them. These
three approaches are considered in more detail below.

Chen et al. (2014) initially proposed a framework for modelling station choice of park and ride
passengers under conditions of uncertainty, where the utility function is based on prospect
theory (Kahneman & Tversky, 1979). They suggest that as well as assessing the relevant
factors (outcomes) of each alternative an individual must also make a judgement about the
likelihood of these outcomes occurring. Factors such as how long it takes to get to the station
or how long it takes to find a parking space are not definite but uncertain as they can be
affected by traffic congestion or decisions made by other passengers on any particular day.
Therefore the choice made by a passenger will depend on their attitude to risk. They propose

a ML model where the utility function is based on prospect theory and incorporates a risk
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aversion component, representing risk attitude and degree of risk attitude, and that takes

the following general form:

PT(U) = > [w(p,)v(x)], (3.29)
m

where PT(U) is the utility of an uncertain factor, obtained by multiplying the utility value of
each factor attribute (x,,) by its respective probability (p,,) and then summing the product
for all the attributes. The probability is included as a weighted probability function, w(p,,),
that can take various forms and is known as the ‘risk weighting function’ and the attribute
utility is included as a value function, v(x,,). They propose the following uncertain factors
and associated attributes:

* Travel time to station PT(V;r) — average travel time and variance of travel time

* Parking search time PT(Vpgr) — average and variance of search time for each of free

parking, paid parking and on-street parking

* Crowding on trains PT(V;,-) — low level, average level and high level crowding.

Prospect theory-based utility functions are defined for each of these factors, following the
form in Equation 3.29 and these are then summed to obtain the utility function of each
station alternative:

V = PT(Vyr) + PT(Vpsy) + PT(Ve) + C, (3.30)

where C represents all the other — non-uncertain — factors such as parking cost, train
fare and so forth. The utility function is incorporated into a ML model for estimation. The
framework was subsequently applied to estimate station choice under parking search time
uncertainty (Chen et al., 2015). In a comparator MNL model, parameters for variation in
parking search time and availability of parking bays were found to be significant at the
1% level. However, in the ML model where these were treated as random parameters they
were not significant and apparently not random. The ML model did indicate that survey
respondents were risk averse to variation in parking search time, and this model had a lower

Akaike information criterion (AIC) than the MNL model, but its validity is questionable.

Pang and Khani (2018) developed several random parameter ML models of parking lot
choice, using data from an on-board survey of passengers travelling on commuter rail and
bus services run by Capital Metro, the regional public transportation provider for Austin, USA.
The standard deviations of several estimated parameters (car access time, transit in-vehicle
time, number of transfers) were significant, indicating that they vary within the population.
They also applied an extension to the model allowing for correlation between the random
parameters. This revealed that the parameter for car access time was positively correlated
with the parameters for number of transfers and walk time (within the transit leg), indicating

that travellers ‘motivated’ by a short car access trip are more likely to be ‘motivated’ by
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fewer transfers and a shorter walk time. The ML models performed substantially better
than a comparator MNL model, with log-likelihood (LL) increasing from —1035 in the best
MNL model to —751 in the ML correlated coefficients model. A potential weakness of this
work is the assumption made that the random parameters follow a normal distribution,
implying that a parameter can take both a negative and a positive value. This is likely to be
counter-intuitive for many of the explanatory variables, and a log-normal distribution might
have been more appropriate (with variables expected to have a negative parameter entered

as negative values).

The work of Weiss and Habib (2017) is particularly interesting as it is seeking, primarily, to
address the issue of spatial correlation in the context of station choice (see Section 3.3.3).
The proposed model, which they call the spatially weighted error correlation (SWEC) model,
specifies a correlation between each pair of stations (in each individual’s choice set) based
on a function of distance between them. The function used is the inverse of the square root
of the distance, which has the effect of increasing the correlation for stations that are closer

together. For each off-diagonal in the covariance matrix the parameter is specified as follows:

LA (3.31)

\/d_ij,
where b is the estimated parameter, i is the matrix column index and j the row index, and d
is the distance between alternatives i and j. Several models, including a comparator MNL
model, were estimated using revealed preference data obtained from a telephone survey
of five percent of households within the Greater Toronto and Hamilton area, Canada. The
SWEC models performed better than the MNL model in terms of goodness of fit, although
not dramatically so. The best performing SWEC model had an adjusted McFadden’s R? of
0.455 and a LL of —3144, compared with 0.419 and —3357 for the MNL model. However,
the research unfortunately reveals nothing about the effectiveness of this approach in terms
of generating realistic non-proportional substitution patterns, nor whether the predictive
performance of the SWEC model is an improvement over the standard MNL model.

3.3.5 Model validation and testing

The overall performance of a discrete choice model is often assessed using a likelihood ratio
index, which measures how well the model with its estimated parameters performs compared

to a base model:
LL(FULL)

~ LL(NULLY’ 5:32)
where LL(FULL) is the maximum log-likelihood with variables and LL(NULL) is the maximum
log-likelihood of the base model. There are two forms of the base model commonly used.
The first is estimated under the assumption that each alternative has an equal chance of
being chosen (the ‘no information model’); and the second is estimated with alternative

specific constants entered only, which implies that the probability of choosing an alternative
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is the same as the actual market share of that alternative in the dataset, for each individual
(see Hensher, Rose, and Greene (2016, pp. 446-456) for a fuller discussion). The most
used likelihood ratio index is the adjusted McFadden’s R-squared (rho-squared), which
penalises for the number of predictor variables (k) included, especially if those variables do
not sufficiently add to the explanatory power of the model:

22 _ LL(FULL)—k

= 3.33
adj LL(NULL) (3.33)

However, it is important to note that it is only valid to compare models on the basis of
their rho-squared if they have been estimated using identical samples and the same set of
alternatives, i.e. when LL(NULL) is the same for all the models (Train, 2009).

Another commonly used measure of model performance, adopted in a number of station
choice studies (Blainey & Evens, 2011; Desfor, 1975; Fan et al., 1993; Harata & Ohta, 1986;
Liou & Talvitie, 1974; Mahmoud et al., 2014) is predictive accuracy. For each individual,
the alternative with the highest probability according to the model is identified and then
compared with the choice that the individual actually made. Across all individuals, the
percentage where both these match is referred to as the percent correctly predicted, and this
might be used to compare the performance of different models. However, this approach is
fundamentally flawed. The researcher is unable to say which alternative an individual will
choose, as the true utility of each alternative is not known. That is why a probabilistic model
was adopted in the first place. By definition, the choice with the highest probability will not
always be chosen, it is just more likely to be chosen. Train (2009) gives the example of a
model with two alternatives that have predicted choice probabilities of 0.75 and 0.25. This
means that if 100 individuals were asked to choose between the two, 75 would be expected
to choose one, and 25 the other. However, the percent accurately predicted procedure would
assume that all 100 choose the one alternative with the highest probability. Train (2009)
suggests that this performance measure should be avoided as ‘the procedure misses the
point of probabilities, gives obviously inaccurate market shares, and seems to imply that the
researcher has perfect information’. A better measure is to compare the number of times an
alternative was chosen with the sum of the predicted probabilities for that alternative across
the sample, which can be presented as a contingency table (if the number of alternatives is
not too large) as shown in Figure 3.11 (Hensher et al., 2016). This approach enables the
predictive performance of models estimated on different samples to be compared.

Validating a predictive model against the sample used to calibrate it can lead to optimistic
performance estimates. Additional validation can include testing the model on similar but
independent data, for example by splitting the data into two parts and using one to develop
the model and the other (the hold-out sample) to measure its performance, or by using
advanced techniques such as cross-validation or bootstrapping (Steyerberg et al., 2001). The
validation and testing methods used in prior station choice research are summarised in Table

3.3, and it is apparent how little testing has been carried out. The two earliest studies tested
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| Cross tabulation of actual choice vs. predicted P(j) |
| Row indicator is actual, column is predicted. |
| Predicted total is F(k,j,i)=Sum(i=1,...,N) P(k,j,i). |
| Column totals may be subject to rounding error. |

NLOGIT Cross Tabulation for 4 outcome Multinomial Choice Model

XTab_Prb| BS TN BW CR Total
— S 0 S
BS| 12.0000 12.0000 4.00000 10.0000 38.0000

TN | 10.0000 19.0000 5.00000 12.0000 46.0000

BW | 9.00000 18.0000 8.00000 7.00000 42.0000

CR| 8.00000 13.0000 5.00000 45.0000 71.0000

Total | 40.0000 61.0000 22.0000 74.0000 197.000

FIGURE 3.11: Example of contingency table of predicted choice outcomes produced by

NLOGIT. Note: Reprinted from ‘Applied choice analysis’ (2nd ed.), by Hensher, D. A., Rose, J.

M., & Greene, W. H., 2016, p. 501, Cambridge University Press. Image reproduced with
permission of the rights holder, Cambridge University Press.

models against data from a new location (Liou & Talvitie, 1974) or an additional survey
(Desfor, 1975), with the ‘percent correctly predicted’ measure suggesting they performed
well; and Lythgoe and Wardman (2002, 2004) estimated demand for two new parkway
stations, although the model substantially under-predicted demand. Only Sharma et al.
(2017) have reported a rigorous process for testing model performance against a hold-out

sample.

3.4 Obtaining and preparing choice data

3.4.1 Data sources

The choice data used in prior station choice research has usually been obtained from revealed
preference (RP) OD passenger surveys carried out at stations or on trains. Two exceptions are
Wardman and Whelan (1999) who combined data from 4,000 on-train and postal surveys
with some 29,000 observations from a stated preference (SP) exercise; and Chen et al. (2015)
who used a SP survey of 600 rail users at seven stations. The primary advantage of using
RP data is that it reflects actual choices made by individuals; and in the case of station
choice modelling a variety of data sources are available (in the UK at least) from which
attributes that may explain those choices can be obtained. In contrast, SP data is based on
what individuals say they would do under hypothetical choice situations, and this may differ
from what they actually do (Train, 2009). However, such data is useful when information
on actual choices is not available, such as a new product, or when attributes that explain
actual choice are not readily available. For example, the attributes used by Chen et al. (2015)
in their SP survey included: ‘usual parking search time’ and the ‘probability that the worst
parking search time occurs in one month’. For a detailed discussion of RP and SP and their
relative merits see Train (2009, pp. 152-156) and Boyce and Williams (2016, pp. 219-229).
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Passenger surveys may be at the national level, for example Blainey and Evens (2011) and
MVA Consultancy (2011) used data collected in Britain by the NRTS during 2004-2005, or
at the local or regional level, such as the survey of commuter rail lines carried out by New
Jersey transit (Kastrenakes, 1988). An alternative approach was adopted by Desfor (1975)
who collected licence plate numbers from cars that were parked or dropping off passengers
at stations, and used the registered addresses of the vehicle owners as a proxy for trip origin.
In contrast, the models developed to assess demand for stations on the planned high speed
rail line between London and the West Midlands in the UK (HS2) were not based on any
observed station choice data. Rather than calibrating a model to estimate parameters, GJTs
were calculated using established elasticities from an existing multi-modal model (see Section
3.3.1 for more details). The approach adopted by Lythgoe and Wardman (2002, 2004) does
not require data on ultimate trip origins or destinations as the dependent variable is not
observed station choice but the number of rail trips on particular flows derived from ticket
sales data (see Section 3.6 for more details). Table 3.1 includes information on the survey

size and data type used in prior station choice studies.

3.4.2 Disaggregate vs. aggregate

Discrete choice models are often thought of as disaggregate-only models which are estimated
using data at the individual level. However, the dependent variable can also be the observed
share of each alternative at some unit of aggregation, and this approach has been adopted in
some studies. For example, Debrezion et al. (2007a) used the observed proportion of the
three most frequently chosen stations at postcode area level as the dependent variable in
an MNL model, and Debrezion et al. (2009) estimated an NL model with the proportion
of joint access mode and station choice for each postcode area as the dependent variable,
with 12 choice combinations per postcode area (three alternatives per area and four access
modes). In both cases, although the original data was disaggregate and obtained from an OD
survey carried out by the Dutch Railway Company, it was supplied to the researchers in an
aggregated form. In another study, Kastrenakes (1988) had access to disaggregate data from
26,000 responses to an OD survey of nine commuter lines, but chose to aggregate it at the
minor civil division level, a decision that probably reflects the capabilities of the analytical
software available at that time.

There are several consequences of aggregating data prior to model estimation: it is statistically
inefficient as data from many individual observations is grouped into a relatively small number
of zone-based observations; the model is unable to account for intra-zonal variability (for
example, the access distance to a station is treated as being the same for an entire zone);
and there is the potential for statistical bias, for example caused by the issue of ‘ecological
fallacy’ (Ortuzar, 1980). An ecological fallacy occurs when results from a model estimated
using zonal data are assumed to also apply to the individual observations that make up the

zones. This would only be true if the zones were homogeneous, which is rarely the case,
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and the degree of intra-zonal heterogeneity will determine the extent to which ecological
fallacy is a problem. This could mean that a variable that is not significant in an aggregate
model may in fact be a significant factor in choice at the individual level, and vice versa.
Ecological fallacy is closely related to the modifiable areal unit problem (MAUP), which is a
consequence of the arbitrary nature of zones, which can vary in size (the ‘scale problem”)
or vary in composition (the ‘aggregation problem’) at the whim of the researcher. Different
decisions regarding the size and composition of zones can result in different model results,
for example as scale increases correlation coefficients tend to increase (Openshaw, 1984).
Fotheringham and Wong (1991) examined the impact of MAUP on the calibration of a logit
regression model and found it to be sensitive to both the scale and aggregation problems and
‘to produce highly unreliable results’. They suggest three potential solutions: report results
using different aggregation scales and zone structures; attempt to create ‘optimal zoning
systems’ that maximise inter-zonal variation and minimise intra-zonal variation (though what
is optimal might not be the same for all variables); or avoid using aggregated data. Using
disaggregated data to calibrate models does, however, present a problem of its own. How
can the results of these models be used in the aggregate models required to forecast station

demand? This issue is considered further in Section 3.6.

3.4.3 Defining choice sets

A choice set must meet three conditions to be consistent with the discrete choice framework.
First, the alternatives must be mutually exclusive; second, the number of alternatives must
be finite; and third, the choice set should include all possible alternatives (Train, 2009). A
passenger can only depart from and arrive at a single railway station, and there are clearly
a finite number of stations in any choice set, so the first two requirements are met. The
third is more problematic, as the researcher usually only knows what choice was ultimately
made (unless data is from an SP survey). The choice set will depend on the stations which
are feasibly available based on a passenger’s origin and destination, but will also vary on
an individual basis, influenced by socio-demographic characteristics, level of knowledge,
attitudes and perceptions (Basar & Bhat, 2004). The choice set might also be constrained in
certain circumstances. For example, if an individual can only walk to a station, then there
must be a cut-off distance at which a station is no longer considered feasible. A feature of
logit models is that an alternative can never have a probability of zero, and if an alternative
has no realistic prospect of being chosen it can be excluded from the choice set (Train, 2009).
However, setting a threshold is fraught with difficulties, and often a fuzzy concept. How, for
example, can the appropriate cut-off distance for walk access to a station be set, when it will

surely vary on an individual basis?

Castro, Martinez, and Munizaga (2009) highlight the potential for ‘serious problems’ with
model predictions if the choice set is poorly specified and argue that while in some circum-

stances it might be plausible to exogenously define feasible alternatives, for example in the



62 Chapter 3 Railway station choice modelling: methods and evidence

case of travel mode choice, in other situations, such as when modelling spatial alternatives, it
becomes very complex or arbitrary. A potential solution is to use a probability-based approach,
for example the two-stage MNL model developed by Basar and Bhat (2004) to study airport
choice, where the probability of an alternative being in an individual’s choice set is modelled
first.

A range of methods with varying degrees of complexity have been adopted for defining
choice sets in the field of station choice modelling, and these are summarised in Table 3.4.
Most methods can be split into one of three groups, based on distance, observed choice,
and catchments. In the distance-based method each individual has their own choice set
determined by the closest x stations to their origin, with the aim of maximising the number
of observed choices accounted for, while keeping the number of alternatives to a reasonable
number (Blainey & Evens, 2011; Fan et al., 1993; Mahmoud et al., 2014; Weiss & Habib,
2017). In the observed choice method, the choice set is defined at the area level, for example
the stations chosen by passengers living in a particular locality (Kastrenakes, 1988) or the
most frequently chosen stations in a postcode area (Debrezion et al., 2009). The catchment-
based method assigns a catchment of a certain radius to each station, and this determines
whether an alternative is within either an individual or area-based choice set (Adcock, 1997;
Lythgoe & Wardman, 2004). This method is of some concern, especially for models that
aim to improve demand prediction, as the main advantage of modelling station choice is to
overcome the inadequacies of defining station catchments in this way, as discussed in Section
2.4.1. Unusually, Adcock (1997) used alternative rail legs from trip origin to destination as

the choices, rather than stations, reflecting that the entire door-to-door trip was modelled.

An interesting alternative method was adopted by Chakour and Eluru (2014), based on the
concept of the maximum distance passengers are willing to travel relative to their nearest
station (D):

D= Distance to chosen station - Distance to closest station (3 3 4)
- Distance to closest station : :

This ratio was calculated for every individual in the dataset and the 95th percentile was taken
as the threshold value. For each individual a D ratio was then calculated for all stations in
the study area (replacing the chosen station in the ratio), and only those stations with a D
ratio less than the threshold were included in the individual’s choice set. They found that
using a single ratio to determine the threshold was problematic, as someone living very close
to their nearest station is likely to be willing to travel much further relative to that distance
than someone whose nearest station is a much greater distance from their home. To address
this they calculated a separate threshold value for five ‘distance to nearest station’ bands. The
resultant choice sets varied in size from 1 to 18 alternatives, with 91% containing between 1

and 5 stations.

Pang and Khani (2018) and Sharma et al. (2017) both adopted particular strategies to select
a manageable number of alternatives for each individual from large universal choice sets

(188 and 418 respectively). Both these studies are concerned with park and ride lot choice,
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and were not restricted to modelling station or subway choice as they also included bus
services. Pang and Khani selected the alternatives based on ‘thresholds’ of 15 minutes and 50
minutes which were applied to the shortest possible access leg and the total trip time (origin
to destination) respectively. The thresholds were identified from a sensitivity analysis and
were set to account for 90% of observed choice. Sharma et al. first removed any alternatives
where the access leg time would be greater than the total time from origin to destination,

and then selected 19 at random from the remainder (plus the chosen alternative).

3.5 Measuring representative utility

3.5.1 How do passengers choose a station?

Ideally there would be a body of behavioural research exploring the station choice decision
process which could be drawn upon to inform model development. This might answer
questions such as: ‘how many stations do passengers consider?’, ‘what information do
passengers evaluate in making their choice?’, ‘what information sources are used?’ and ‘how
much effort and time do passengers put into weighing-up the pros and cons of alternative
stations?’. Unfortunately there does not appear to be any research of this nature, so it is

necessary to draw upon other sources of information to guide model development.

Stated preference surveys can give useful insights into factors that are important to passengers.
For example, Adcock (1997) carried out a review of stated preferences surveys that had
been commissioned to assess proposals for station development, and identified the following
factors as particularly important to passengers: generalised journey time (consisting of
actual journey time, transfer penalties, and service frequency penalties); fare; access and
egress distances; ease of car parking; ease of road access; level of car ownership; and journey
purpose. Due to data availability, only the first three were included in the models subsequently
developed. More recent stated preference surveys can give further insights, for example a
study into customer priorities for released capacity on the West Coast Mainline identified
crowding on trains and interchange as the two factors that most influence the quality of
the rail journey experience for existing passengers. More specifically, the value of rail falls
significantly as soon as a passenger does not have a seat, and passengers want direct services
— the waiting time between trains is of little relevance as they would rather have no change
at all (Passenger Focus, 2012).

Chakour and Eluru (2014) approached the problem by including a broad range of variables in
their station choice models — relating to individual and household socio-demographics, the
trip, levels of service, station, land-use and the built environment. During model calibration
statistically insignificant variables were systematically removed in a process ‘guided by
intuition and findings from earlier literature’. Kastrenakes (1988) also tested a range of

variables in different combinations and found many of them to be ‘noncontrolling of rail riders’



methods and evidence

Chapter 3 Railway station choice modelling

64

Study

Choice set definition - station or route

Level defined

Additional constraints

Liou and Talvitie (1974)
Desfor (1975)
Harata and Ohta (1986)

Kastrenakes (1988)
Fan et al. (1993)

Adcock (1997)

Wardman and Whelan (1999)
Lythgoe et al. (2004)

Debrezion et al. (2007a)
Debrezion et al. (2009)
Blainey and Evens (2011)
Fox et al. (2011)

Chakour and Eluru (2014)

Givoni and Rietveld (2014)
Mahmoud et al. (2014)

Sharma et al. (2017)

Weiss and Habib (2017)
Pang and Khani (2018)

Alternatives ‘chosen on the basis of data and were usually near the chosen station’
Least cost and second least cost (determined by a cost function) for each Census Block.
Four alternate routes (origin to a common station).

Observed station choice for each municipality. Each municipality has own choice set.
Commuter rail: Five closest stations measured by straight-line distance to the passen-
ger’s home (accounts for 98% of observed choice). Subway: The two closest stations
on the two closest lines measured by straight-line distance from the passenger’s home
(accounts for 95 of observed choices on a station basis and 99 percent on a line basis).
Up to ten alternative rail legs (origin to destination) for each rail trip in the dataset
were selected, with a catchment of 15km radius assumed for most stations, 35km for
large stations (15km was found to account for > 90% of passengers).

Two stations (no details of selection method provided)

Each station assumed to have a 20km catchment divided into zones. Potential compet-
ing stations had to be within 20km of at least one zone of another station and were
then ranked by criteria, with the top 15 making up the choice set.

The three most frequently chosen stations for each postcode area

Three most used stations for each postcode area.

Nearest 10 stations to trip end, measured by network distance.

‘iterative process’ to select the 5 ‘best’ alternatives, where the most attractive stations
determined from an earlier model form the choice set for the next model.

Based on the concept of the maximum distance passengers are willing to travel relative
to their closest station.

All 11 stations in the Amsterdam area.

5 closest stations for commuter rail (accounts for 98% of trips) and 3 closest stations
for subway model (accounts for 80% of trips) .

For each observation: universal choice set (of 418) reduced by removing those where
access leg time > origin to destination time; then a random sample of 19 selected, plus
the chosen station.

4 closest stations by drive time, plus the chosen station if not included

Alternatives selected from universal choice set (188) based on ‘thresholds’ of 15 min-
utes and 50 minutes applied to the shortest possible access leg and the total trip time
(origin to destination) respectively. Chosen alternative added if not included.

Unknown
Area
Individual

Area
Individual

Individual

Individual
Area

Area
Area
Individual
Individual

Individual

Universal
Individual

Individual

Individual
Individual

Walk access mode not available if station
>3km from origin; bus access mode not
available if no stop within 800m of origin.

Only closest station available for walk ac-
cess.

Individual Transit not available as access
mode choice if station ‘very close’ to ori-
gin, or if no transit stop within 37 minutes
walk.

TABLE 3.4: Summary of choice set specifications used for station choice models.
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Attributes of
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Station
accessibility

Railway
service

Frequency

Land-use T Access/egress

Transfers
Fare

Facilities

Journey time

Characteristics
of individuals

Socio-economic

FIGURE 3.12: The type of factors that influence the decision to choose one station over
another.

station choice.” This reflects the general approach of the prior research, which concentrates
primarily on model structures and gives less attention to selecting and defining attributes.
There is research in closely related fields which could inform the selection and definition
of attributes which has rarely been drawn upon. For example, there is a sizeable body of
work relating to station accessibility, covering themes such as walking and cycling (Park,
Kang, & Choi, 2014; Puello & Geurs, 2015; Zhao et al., 2003), access mode (Cervero et al.,
1995; Guan et al., 2007), accessibility for the elderly (Lin et al., 2014), the access journey
(Givoni & Rietveld, 2007; Keijer & Rietveld, 2000; Passenger Focus, 2007, 2011), the door-
to-door journey (Brons & Rietveld, 2009), and the role of the built-environment (Cervero
et al., 1995; Jiang, Zegras, & Mehndiratta, 2012). There has also been research into the
potential to increase demand by improving access to stations (Brons, Givoni, & Rietveld,
2009; Giannopoulos & Boulougaris, 1989; Wardman & Tyler, 2000) and the effect of station
enhancement on rail demand (Hagen & Heiligers, 2011; Preston et al., 2008).

It is useful to group the factors that influence the decision to choose one alternative over
another into two groups, one containing attributes of the alternatives and one containing
characteristics of the decision makers (Ortizar & Willumsen, 2011). In terms of station
choice, the attributes of the alternatives can be further grouped into those relating to station
accessibility, such as distance to the station, and those relating to the railway service provided
from a station, such as frequency of service (Givoni & Rietveld, 2007). Choices also depend
upon the prejudices and tastes of individuals, and it may be possible to represent some
of these characteristics in models by introducing variables based on socio-economic data
(Ortizar & Willumsen, 2011). The interplay of the type of factors involved is illustrated in
Figure 3.12.
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3.5.2 Accessibility attributes
3.5.2.1 Access and egress

The most common variable included in previous research is access distance from the trip
origin'® to the departure station, with increasing distance expected to have a negative effect
on station choice. Most studies have used the straight line measure for access distance
(Adcock, 1997; Debrezion et al., 2007b, 2009; Desfor, 1975; Mahmoud et al., 2014), which
is unlikely to reflect the true distance travelled by any chosen access mode. This can be
improved upon by measuring distance via the road network or cycle path network (Blainey
& Evens, 2011; Fan et al., 1993; Givoni & Rietveld, 2014; Sharma et al., 2017). Distance
is normally included as a continuous variable, although Debrezion et al. (2007a) created
a series of distance bands which were entered into the model as dummy variables. This
approach allows a separate coefficient to be estimated for each band and for the changing
effect of distance on utility to be represented. They found the coefficient was positive for all
bands, relative to the furthest band (> 10,000 m) which was excluded as the reference, with
higher coefficients for lower distances and a smooth decline as distance increases. The utility
of distance was seven times higher at 250 m that at > 10,000 m.

An alternative to access distance is estimated travel time or in-vehicle time for the access
trip, which again is expected to have a negative effect on station choice. This may simply be
distance converted into time (Kastrenakes, 1988), or a more accurate reflection of journey
time by access mode, for example public transport (Debrezion et al., 2009; Givoni & Rietveld,
2014) or car (Chen et al., 2015; Fox, 2005; Pang & Khani, 2018; Weiss & Habib, 2017).
Travel time is intuitively a more appropriate measure, as when a passenger is weighing up
the relative utility of two stations it will be the length of time it takes to get to/from a station
or the total journey time that is the important factor to them, rather than the actual distance
travelled which is unlikely to be known in most instances. Clearly there will be a correlation
between distance and time, but travel time can be influenced by a range of factors other than

distance such as the class of road and flow conditions.

If only a single parameter is estimated for access distance this will represent an average effect
on utility across the different access modes. However, this effect would be expected to vary,
with a larger negative coefficient for non-motorised access modes compared with motorised.
In a NL model with access mode at the upper level, this can be accommodated by specifying
a different parameter for distance or time in the utility function of each nest, which was the
approach adopted by Debrezion et al. (2009). However, in the MNL model developed by
Blainey and Evens (2011), only a single coefficient is estimated for access distance. This
model could potentially be improved by using dummy variables representing each access

mode interacted with access distance. For example, suppose there are three access modes

16The trip origin is commonly the address postcode (at varying degrees of spatial resolution), though some
studies have used geocoded home addresses (Fan et al., 1993; Mahmoud et al., 2014; Pang & Khani, 2018; Weiss
& Habib, 2017), and Desfor (1975) used the census block centroid.
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(car, bus, walk), the access distance component of the utility function could be modified from
Vi = PAd; to:

3
Vie = Buais(Dmodeg, x Ady), (3.35)

m=1
where Dmodey,, is a dummy variable with value 1 if individual i uses access mode m, and

zero otherwise; Ad;. is access distance; and 3,4 is the parameter for mode m.

There has been relatively little attention given to the egress journey, with Adcock (1997)
including egress distance, and Chakour and Eluru (2014) including a dummy variable to
identify whether the egress mode was public transport. Adcock found that passengers were
willing to accept longer access journeys than egress journeys and suggests this could be due
to the availability of a car or better knowledge of public transport options at the home end. It
is possible that the availability of a bicycle or better knowledge of cycling or walking routes at
the home end might also result in acceptance of longer access journeys. Cervero et al. (1995)
found that walking was the predominant egress mode for a greater distance than it was
the predominant access mode. This issue of ‘asymmetry’ of private access/egress transport
modes has been identified by Keijer and Rietveld (2000) who found that 35% of passengers
used a bicycle to access the station, but only 10% cycled from the egress station to their final
destination. They also found that public transport was more important for the egress leg
than the access leg, but as their study only included trips where the destination was not the
home this may reflect the higher availability of public transport in city centre destinations

compared with residential origins.

In some studies factors relating to the access journey are incorporated into a composite
measure of generalised cost or generalised journey time (Lythgoe & Wardman, 2004; MVA
Consultancy, 2011), and other less often used variables include the cost of the access journey,
such as car cost or bus fare (Fox, 2005; Liou & Talvitie, 1974; Wardman & Whelan, 1999),
and the frequency of public transport (Debrezion et al., 2009; Wardman & Whelan, 1999).

Kastrenakes (1988) used a ‘local to users’ dummy variable to indicate whether a station
was located in a particular minor civil division and therefore considered the local station to
passengers living in that minor civil division. Interestingly, this variable was not correlated
with access time and Kastrenakes suggests that it may be capturing ‘intangibles’ such as
a greater awareness of services and parking within a passenger’s home town. Due to the
aggregate nature of the study, access time was the average from the residential centre of
each minor civil division to each of the alternative stations, and this could have masked a
potential correlation at the level of the individual. However, similar variables have been
included in several disaggregate studies. Fan et al. (1993) used a dummy variable to indicate
whether a station was the closest to home (trip origin) of the choice alternatives, and found
that including it resulted in a better model and exerted a ‘strong bias effect’. Adcock (1997)
included a ‘nearest station used’ dummy, in addition to access distance, and found that this
was a particularly important factor for season ticket holders, perhaps reflecting the prior

choices that these passengers have made about where to live.
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Several studies have used a variable to capture any potential preference amongst commuters
for an origin station that is broadly in the same direction of travel from their home as their
workplace. Both Mahmoud et al. (2014) and Weiss and Habib (2017) calculated the angle in
degrees between a straight line from the origin to the workplace and a straight line from the
origin to the station. Mahmoud et al. entered the measure as a continuous variable, while
Weiss and Habib used a dummy variable to indicate if the angle was greater than 90 degrees.
A negative effect on utility was reported in both cases, indicating that passengers prefer a
station to be in a similar direction of travel as their destination. An improved measure could
be derived that is based on travel on the access network, rather than using a straight line
that may not reflect the network routes available. It is also possible that the size of this effect
depends on the distance to the origin station, as the direction of travel might be of little
consequence for very short access journeys. This could be explored by calculating a separate
parameter for different access journey length bands. A related variable used by Chakour and
Eluru (2014) was the distance by rail from each station to the central business district, which
was found to have a negative coefficient. As the central business district was the assumed
destination on the commuter lines studied, this indicates that passengers prefer stations
that are in the direction of the destination. There is a potential relationship between these
variables and overcrowding, as it is possible a passenger would choose an earlier station on
the line, in order to guarantee that they got a seat, and thus their access trip would be in the

opposite direction to their destination.

Pang and Khani (2018), included the number of intersections on the car access route, but
did not report it in their final models, presumably as its effect was not significant. A similar
measure that has not been considered in previous station choice research, but is common in
accessibility studies, is the directness of the route. This can be calculated as the ratio of the
network distance to the straight line distance. A more direct route might indicate that access
is easier, though this may vary by access mode and could be more relevant to passengers

who walk or cycle to a station (Lin et al., 2014).

A summary of the full range of factors related to the access and egress journey used in prior

station choice research is provided in Table 3.5.

3.5.2.2 Facilities

Car parking is the dominant station facility attribute considered in prior studies, and has
been represented in a variety of forms, such as a dummy variable indicating the presence of a
car park (Debrezion et al., 2007a, 2009; Liou & Talvitie, 1974), the number of parking spaces
(Blainey & Evens, 2011; Chakour & Eluru, 2014; Chen et al., 2015; Fan et al., 1993; Fox,
2005; Mahmoud et al., 2014; Pang & Khani, 2018; Weiss & Habib, 2017), the availability
of free spaces (Kastrenakes, 1988), and parking cost/fee (Chen et al., 2015; Desfor, 1975;
Kastrenakes, 1988; Mahmoud et al., 2014; MVA Consultancy, 2011). In most cases the

presence of a car park and the number of parking spaces has a positive effect on station
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Author(s)

Factors considered

Liou and Talvitie (1974)

Desfor (1975)

Harata and Ohta (1986)
Kastrenakes (1988)

Fan et al. (1993)

Adcock (1997)
Wardman and Whelan (1999)

Lythgoe and Wardman (2004)
Fox (2005)

Debrezion et al. (2007a)
Debrezion et al. (2009)

Blainey and Evens (2011)
MVA Consultancy (2011)
Chakour and Eluru (2014)

Givoni and Rietveld (2014)
Mahmoud et al. (2014)

Chen et al. (2015)
Weiss and Habib (2017)

Sharma et al. (2017)

Out-of-vehicle time, in-car time, on-bus time, car operating cost, out-
of-pocket cost (parking/bus fare), total cost (operating plus out-of-
pocket)

Distance to station (straight line, part of cost function)
Walk time (walk, bus), wait time (bus), in-vehicle time (bus)
Local station (dummy), access time (shortest route)

Access time plus rail in-vehicle time (transit and car), transit fare, clos-
est station (dummy for car access mode), walk distance (walk mode)

Access and egress distance (straight line), nearest station used
(dummy)

Access time, access cost (by journey reason: commute, business,
leisure), bus headway

Time and cost (by car) of accessing origin station (used within a GC)
Driving cost, in-car time
Distance to station (range of categories as dummies, straight line)

Distance to station (straight line), travel time by PT, PT frequency (ser-
vices per hour)

Distance to station (road network)
Access time (part of GJT)

Time to closest station, average time to viable stations, time to chosen
station, egress mode is transit, distance from station to CBD

Car distance, public transport travel time, taxi distance, bicycle dis-
tance, walking distance, other distance (all distances by network)

Access distance (straight line), direction of station in degrees from
home relative to regular work place

Access time

Access time (drive), drive cost (part of total trip cost), direction of
station from home relative to work place $> 90$ degrees (dummy)

Access distance (network), parking lot within 1km of a freeway, park-

ing lot within CBD

Access time (car); number of intersections; proportion of access route
on highway (rather than local streets)

Pang and Khani (2018)

TABLE 3.5: Summary of access and egress factors used to construct utility functions in station
choice models.

choice, although there have been conflicting results and counter-intuitive coefficient signs in
some cases. For example, Fan et al. (1993) developed two models for the Greater Toronto area,
one for commuter rail and one for subway, and while the coefficient for parking availability
was positive and significant in the commuter rail model, it was ‘not useful’ in the subway
model. They raise an interesting point that if a passenger arrives at their first choice station
to find no spaces available they have no option but to try another station, but as far as the
model is concerned their revealed choice will be the second station. As subway stations
are closer together and have a more frequent service, a passenger can drive on to another
station comfortable in the knowledge that they will have a short wait for the next train,
possibly explaining why the subway model is insensitive to parking capacity. Kastrenakes
(1988) attempted to include parking fee and parking availability variables, but both resulted
in significant but counter-intuitive coefficients, implying that passengers are more likely to
choose a station as fees increase or as parking availability decreases, and they were excluded
from the final model. However, there are likely to be endogeneity issues at play here and, as
Kastrenakes notes, a high parking fee and lack of availability could both result from a station

being very popular. In addition, a positive coefficient for the number of parking spaces may
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not indicate that more spaces attract passengers but that more passengers lead operators
to provide more spaces (Chakour & Eluru, 2014). Adcock (1997) notes that the size of the
station car park might not be a good measure of parking availability, as other car parks or
on-street parking may be local to the station. He proposes a car park valuation exercise as a
promising alternative, given that a small-scale survey indicated a good correlation between
highly valued car parks and the proportion of railheaders. However, this may be impractical
for large area studies, and he suggests the calibration of station-specific ‘attractiveness’
parameters based on revenue data from MOIRA that could capture the effects of car parking

and other station facilities.

Another potential difficulty is that parking-related variables will only be relevant to decision-
makers who drive to (and potentially those dropped off at) a station. While this can be
accounted for in NL models by specifying mode-specific utility functions, it is a problem for
MNL models. For example, Blainey and Evens (2011) included a variable for the number of
car parking spaces in an MNL model, but a descriptive analysis of the data reveals that car
is a minority access mode. There is potential to improve such a model by using a dummy
variable representing car as access mode interacted with the car parking spaces variable, with

the car parking spaces component of the utility function being modified from V;, = ¢Ps;, to:
Vik = pps(Deary x Psy), (3.36)

where Dcary is a dummy variable with value 1 if individual i uses the car as access mode,
and zero otherwise; Ps; is the number of parking spaces and (p, is the parameter for the
parking spaces variable (which will only be estimated against those observations where the

access mode was car).

A summary of the full range of factors related to station facilities (and land-use) used in prior

station choice research is provided in Table 3.6.

3.5.2.3 Land-use

Only Chakour and Eluru (2014) have incorporated land-use variables in models of station
choice. They identified six characteristics of Montreal traffic analysis zones using principal
component analysis, such as high density/high walkability, commercial, or government/insti-
tutional. However, neither choice of access mode or choice of station was found to be elastic
with respect to these variables, with a 15% uplift resulting in a change of less than 1% in
access mode share or station choice, leading them to conclude that access mode and station
choice ‘do not react to land-use changes’. However, research in related areas suggests that
land-use might play an important role in station choice. For example, Cervero et al. (1995)
found that residential density and land-use mix influence how passengers access stations

and the size of access catchments.
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Type of factor ~ Author(s)

Factors considered

Facilities Liou and Talvitie (1974) Available parking space

Desfor (1975) Parking costs (part of cost function)

Kastrenakes (1988) Parking availability and fee (both had counter-intuitive
signs and excluded from models)

Fan et al. (1993) Number of parking spaces (natural logarithm, for car ac-
cess mode)

Wardman and Whelan (1999)  Facilities at station, parking availability

Fox (2005) Number of park and ride spaces

Debrezion et al. (2007a) Park and ride facility (dummy)

Debrezion et al. (2009) Parking area (dummy), bike stands (dummy)

Blainey and Evens (2011) Number of car parking spaces

MVA Consultancy (2011) Car park cost (part of GJT)

Chakour and Eluru (2014) Size of parking lot (range of categories as dummies)

Givoni and Rietveld (2014) Quality of parking space, quality of guarded bike parking
facility

Mahmoud et al. (2014) Park-and-ride lot capacity, parking cost at morning peak,
refreshment kiosk (dummy), washroom (dummy), re-
served parking (dummy)

Chen et al. (2015) Parking capacity, parking fee, parking fine and control
frequency (around station), various attributes related to
parking search time

Weiss and Habib (2017) On subway (dummy), lot capacity (natural logarithm),
washroom (dummy),

Sharma et al. (2017) Served by trains (dummy), formal parking

Pang and Khani (2018) Designated PnR (dummy), has a rail service (dummy),
has express bus service (dummy), no. of parking bays

Land-use Chakour and Eluru (2014) Government and institutional areas (at origin or at sta-

tion), commercial area

TABLE 3.6: Summary of facility and land-use related factors used to construct utility functions
in station choice models.

3.5.3 Railway service attributes

Attributes used to represent railway service quality include measures of train frequency, such
as trains per hour, per day or at peak periods (Blainey & Evens, 2011; Debrezion et al., 2007a;
Fan et al., 1993; Kastrenakes, 1988; Pang & Khani, 2018); rail journey time (Fox, 2005;
Givoni & Rietveld, 2014; Harata & Ohta, 1986; Liou & Talvitie, 1974; Pang & Khani, 2018;
Weiss & Habib, 2017); journey distance (Blainey & Evens, 2011); fare (Adcock, 1997; Fox,
2005; Harata & Ohta, 1986; Sharma et al., 2017; Weiss & Habib, 2017); and number of
transfers (Fox, 2005; Harata & Ohta, 1986; Pang & Khani, 2018). In some cases a single
measure of GJT, derived from several railway service attributes, has been used (Adcock, 1997;
Atkins Limited, 2011; Kastrenakes, 1988; Lythgoe & Wardman, 2004; MVA Consultancy,
2011). The aforementioned measures have the intuitively expected effect on utility in all
studies, with the exception of Blainey and Evens (2011), where a positive coefficient for
journey distance was obtained for South Wales. Distance may not be a good proxy for time,
as a longer route could be faster dependent on the line running speed, stopping patterns and
whether the service is direct, and this may have resulted in a misspecified model.
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To explore the effect of train frequency on utility, Debrezion et al. (2007b) used two alternative
utility function forms, one with a cross-effect linear additive function and the other with a
transcendental logarithmic (translog) function. In the cross-effect function access distance
categorical dummy variables were cross multiplied with station frequency of service, allowing

the model to show the effect of service frequency on utility at different distance categories:

21
4 :Z Befreq(Deateg;e x freq;) + ..., (3.37)
c=1
where Dcateg;. is 1 if station j is in distance category ¢, and zero otherwise; and freq; is
number of trains per day. Results show that the positive effect of frequency on utility is
greater for passengers living closer to a station ( = 0.0717 at 250 m), compared with those
living further away (8 = 0.0016 at 9,500-10,000m). In the translog model, access distance
and frequency are included individually as their natural logs and their squared natural logs,
and as the product of their natural logs:

Vj = ﬁdistln(diStj) + ﬁdistsq(ln(diStj))2 + ﬂﬁeqln(ﬁeq)
+ Brregsq(In(freq))” + Bispreq(In(dist) x In(freq)) + ..., (3.38)

where dist is access distance as a continuous measure. This model is used to better understand
how the train frequency effect changes with access distance. Results of this model show that
utility declines smoothly as access distance increases for all frequency levels, but the curve is
flatter for stations with higher service frequency, indicating that a station’s catchment (or
market area) is larger when frequency is higher. However, the size of this effect diminishes
as frequency increases.

An interesting alternative approach to capturing the rail service attributes is the rail service
quality index (RSQI) developed by Debrezion et al. (2009), where three determinants of rail
service quality — frequency of trains (represented by waiting time); quality of connectivity
to other stations (represented by transfer time); and relative position of the station on the
network (represented by in-vehicle time between station pairs) — are combined into a
single quality index. A doubly-constrained spatial interaction (flow) model, containing trip
data from 365 stations in the Netherlands, was used to estimate coefficients that were then
used to calculate an RSQI for each station. The flow model is similar in approach to a trip
distribution model, with balancing factors that enforce the constraint, estimated for each
origin:destination pair:

T;; = A;O;B;D; f (GJT;)g(GJT;/d;) exp(e;;), (3.39)
where Tj; is the number of trips between stations i and j, O; is the total number of trips
originating at station i, D; is the total number of trips attracted by station j, A; and B; are
the balancing factors, f(GJT;)g(GJT;;/d;) is a two-part impedance function (where GJT
contains waiting time, in-vehicle time, and transfer time), and ¢ is an error component. An
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RSQI is calculated for each origin:destination station pair using estimated coefficients from
the flow model, and an aggregate RSQI is then calculated for each station i by summing all
the departure:destination RSQIs for that station:

(3.40)
djj

. GJT;
RSQI; = » B;D;f(GITy)8 ( ’ )
j

In a NL model with access mode at the upper level, the RSQI had a significant and positive
effect on station choice. However, it should be noted that the RSQI approach was only
necessary as trip destination data was not available in the passenger survey data used in this
study. If it had been, then the attributes could have been used directly in the station choice

model.

A summary of the full range of factors related to station facilities (and land-use) used in prior

station choice research is provided in Table 3.7.

Author(s)

Factors considered

Liou and Talvitie (1974)
Desfor (1975)
Harata and Ohta (1986)

Kastrenakes (1988)
Fan et al. (1993)
Adcock (1997)

Wardman and Whelan (1999)
Lythgoe and Wardman (2004)
Fox (2005)

Debrezion et al. (2007a)
Debrezion et al. (2009)
Blainey and Evens (2011)
MVA Consultancy (2011)

Atkins Limited (2011)
Chakour and Eluru (2014)
Givoni and Rietveld (2014)
Mahmoud et al. (2014)

Weiss and Habib 2017)
Sharma et al. (2017)
Pang and Khani (2018)

On-train travel time difference
Return fare (part of cost function)

In-vehicle time (rail), out-of-vehicle time (rail), cost (rail), number of
transfers

Trains per hour, GJT
Number of morning peak trains

GJT (consisting of actual journey time, interchange and frequency
penalties), fare, mileage travelled on London Underground

Journey time, journey headway, journey cost (by journey reason: com-
mute/business/leisure)

Fare (part of GC), GJT (part of GC, consisting of rail travel time, no.
of interchanges and headway between trains).

Fare, in-vehicle time, wait time, number of transfers, interchange walk
time

Frequency (trains per day), intercity status (dummy for each region)
Rail service quality index (constructed using a direct demand model)
Train frequency, total distance from origin to destination station
In-vehicle time, frequency penalty, interchange penalty, fare (part of
GJT)

GJT (in-train time, waiting time, boarding penalty)

Train frequency, trip is in direction of central business district

Rail journey time

Station has a connection to local or regional services, station is a re-
gional transit station

Fare (part of total trip cost), journey time (station to destination)
Transit fare, in-vehicle time (transit), wait time (transit leg)

Number of transfers; in-vehicle time (continuous and banded); walk-
time (in transit leg); total transit travel time; frequency/hour (natural
logarithm)

TABLE 3.7: Summary of railway service related factors used to construct utility functions in

station choice models.
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3.5.4 Socio-economic attributes

Some of the models developed in previous studies have included socio-economic attributes,
mostly relating to age (Chakour & Eluru, 2014; Fan et al., 1993; Fox, 2005; Pang & Khani,
2018), sex (Chakour & Fluru, 2014; Fan et al., 1993; Fox, 2005; Pang & Khani, 2018), income
(Fan et al., 1993; Liou & Talvitie, 1974; Pang & Khani, 2018) and car ownership (Chakour &
Eluru, 2014; Debrezion et al., 2009; Fox, 2005; Pang & Khani, 2018).

A particularly important feature of discrete choice model theory is that only the difference
in utility between alternatives is relevant to the decision maker. The absolute value of
utility is irrelevant. For example, adding a constant to the utility of every alternative will
not change the alternative with the highest utility, neither will it change the alternative
chosen by the individual and, from the researcher’s perspective, neither will it change the
choice probabilities. As a consequence, only parameters ‘that capture differences across
alternatives’ can be estimated (Train, 2009). This has important implications when socio-
economic variables are included in a model. Socio-economic variables, such as income or car
ownership, are constant for all alternatives in a decision maker’s choice set, as they are a
characteristic of the individual and not the alternative. Adding a socio-economic variable to
the utility function of all the alternatives would simply add a constant to each alternative and
would not create a difference in utility between them. This problem can be handled either by
excluding the variable from the utility function of one of the alternatives, or by interacting the
socio-economic variable with a variable that does differ between alternatives. For example,
the fare for a train journey (a variable that differs between alternatives) could be divided by
the income of the decision maker (a variable that is constant between alternatives) (Train,
2009).

The variable interaction approach was adopted by Pang and Khani (2018), who interacted
(multiplied) both access time and frequency with income. Negative parameters were esti-
mated for both interacted variables, indicating that as income increases the negative utility
associated with access time increases and the positive effect of frequency on utility is reduced.
According to Pang and Khani this shows that those on higher incomes are ‘more motivated’ by
shorter access distances and ‘less motivated’ by higher service frequency. However, there are
alternative potential explanations, other than the behavioural ones suggested. For example,
perhaps property prices are higher closer to park and ride lots (the focus of this study) and
so higher income travellers live on average closer to them (and thus chosen lots will have

shorter access journeys).

Adcock (1997) notes that research shows that a passenger’s propensity to railhead increases
as the number of cars per household increases, with the effect most marked in moving from
one to two car households. This may be because in a two-car household there is still a
car available to use while the other is parked at a station all day, or may reflect increased
affluence. This suggests that car ownership may influence station choice. Debrezion et al.
(2009) estimated a parameter for car ownership for each access mode (excluded from the



Chapter 3 Railway station choice modelling: methods and evidence 75

walk mode utility function for reasons discussed above) in a nested logit model with access
mode at the upper level. The parameter was positive for car or bicycle as access mode,
but with P-values of 0.483 and 0.720 respectively, these were not statistically significant
findings. An increase in car ownership would intuitively be expected to result in an increased
probability of using the car as access mode, and it might be that the use of an aggregate
measure of car ownership (cars per head for each postcode area) has resulted in a Type II
error. A significant negative parameter was estimated for the public transport access mode,
indicating that public transport is less likely to be used to access a station as car ownership
increases. A negative effect of car ownership on public transport (transit) use was also found
by Chakour and Eluru (2014).

A summary of the socio-economic factors used in prior station choice research is provided in
Table 3.8.

Author(s) Factors considered

Liou and Talvitie (1974) Ratio of total cost to median income

Harata and Ohta (1986) Student (dummy)

Fan et al. (1993) Age (car and transit modes), sex (car mode), annual income >
$50,000 (car mode)

Fox (2005) Car driver (male, 16-19, 20-24, one car), car passenger (male, 35-44,

zero cars, one car), rail-only pass

Debrezion et al. (2009) Car ownership (per head for postcode area)

Chakour and Eluru (2014) 25 years old and younger, male, car ownership, reside in zone with
high vehicle ownership and high percentage of larger vehicles

Pang and Khani (2018) Age, income, sex, number of vehicles, household size, race, years liv-
ing in Austin

TABLE 3.8: Summary of socio-economic related factors used to construct utility functions in
station choice models.

3.5.5 Alternative-specific constants

An alternative specific constant (ASC) for each alternative can be included in its utility
function to capture ‘the average effect on utility of all factors not included in the model’
(Train, 2009). Its role is analogous to the constant in a linear regression model. As only
differences in utility matter (as discussed in Section 3.5.4 above), it is necessary to normalise
the constants, which is usually achieved by normalising one of them to zero (i.e. excluding an
ASC from the utility function of one of the alternatives). The other ASCs are then interpreted
relative to the excluded one (Train, 2009).

In prior station choice research, ASCs are not always included in the utility functions. Blainey
and Evens (2011) found that incorporating ASCs resulted in a better fitting MNL model, and
in a NL model with access mode at the upper level and station choice at the lower level,
Givoni and Rietveld (2014) included only ASCs in the access mode utility functions. In a NL
model with station choice at the upper level, which collapsed to the MNL form, Wardman
and Whelan (1999) interacted the ASCs for each access mode with access distance (ASC



76 Chapter 3 Railway station choice modelling: methods and evidence

x distance), so that the model could account for the affect of access distance on choice of
access mode. The estimated parameters for the interacted ASCs, relative to the reference
access mode (car), were negative for walk and cycle (—0.08) and negative, but less so, for

bus (—0.016), as would be expected intuitively.

3.6 Station choice models in station demand forecasting

While from a transport planning point of view it might be expected that a key aim of station
choice modelling would be to predict the impact of changes to station and service provision,
few of the studies discussed in this chapter have addressed this issue, instead focussing on
developing models to better understand the factors that influence station choice. There
are several examples of local applications, for example Harata and Ohta (1986) used their
model to estimate aggregate passenger flows at their study station, and Kastrenakes (1988)
examined the effect of introducing a hypothetical commuter line by using predicted station
shares to weight variables in a mode choice model. However, there has been limited progress
toward integrating a station choice element into the aggregate models, such as trip end
and flow models, that are typically used to predict demand for new stations or services (as

discussed in Chapter 2).

Wardman and Whelan (1999) attempted to define station catchments based on their station
and access mode choice model. However, they excluded the access mode choice element due
to the amount of time required to derive the access mode variables for each zone to each
competing station, and instead used a simpler distance to station measure in the model. To
define a station’s catchment they used the model to apportion the population of each zone
(postal sector) to one of five competing stations allocated to that zone, before entering the
data into a direct demand summation model. However, due to time and computer resource
constraints, they had to use a subset of the data and this resulted in the summation model
failing to converge. This approach does not appear to have been revisited since, despite the

substantial advances in computational capability.

Lythgoe and Wardman (2002, 2004) proposed an alternative approach for incorporating a
station choice element into a direct demand model, specifically to forecast demand for new
parkway stations. The dependent variable in the model is the number of journeys between a
parkway station and destination stations, obtained from ticket sales data, and there are no
observed choice probabilities. The theoretical approach is described below, but Lythgoe and
Wardman (2002) and Lythgoe and Wardman (2004) should be consulted for greater detail

and full model derivations.

A parkway station’s generation potential is represented by the population within 40 km of the
station (obtained from the 1991 census data), which is allocated to a grid of 16 polygonal

zones. The population of each zone is allocated to a point that represents the zonal centre of
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population. The following direct demand (flow) model can now be formulated:
Vyij = 1 X Py x Pr(raily;), (3.41)

where V,;; is the number of trips from zone a to destination j via parkway station i, n is the
unknown average number of decisions to travel (by any mode or not to travel) in one year,
and P, is the population of zone a. Pr(raily;) is the probability of an individual in zone a
choosing to travel to destination j using parkway station i, which is obtained from a NL
model with a choice between rail and no rail at the upper level and choice of station at
the lower level (See Figure 3.4). The choice set available to each parkway station zone is
composed of the parkway station itself and 10 other (non-parkway) stations that are within
40 km of at least one zonal centre of population and considered to be the most competitivel”.

Pr(raily;) is the product of a conditional and marginal probability:
Pr(raily;) = Pr(raily|raily;) X Pr(raily), (3.42)

where Pr(raily|rail,;) is the conditional probability of using station i to get to j given that a
choice to use rail to get from a to j has been made; and Pr(rail,;) is the marginal probability
of using rail to get to j (rather than another mode of transport or not travelling at all).
Vg7 is unknown as there is no data on trips at zone level. However, the total number of
journeys from parkway station i to destination j is known from ticketing data. Thus, using a

summation model:
Vi = Zn X Pq X Pr(raily;)
a
Vi = ZVaij'
a

The model is estimated after a log transformation, and based on certain assumptions with

(3.43)

regard to n, using non-linear least squares regression. A limitation of the model identified
by the authors is that while the proportion of journeys abstracted from each competing
station can vary dependent upon relative utility values, the ratio of journeys abstracted from
competing stations to new journeys generated at the parkway station is constant (0.5 in
their model)'®. Later work by the authors enhanced the approach by developing a form of
CNL model that allows the ratio to vary depending upon the proximity of a station to its

competitor stations (see Section 3.3.3.1 for a detailed discussion).

In other work, Blainey and Evens (2011) developed a method that utilised a station choice

model to forecast demand abstraction by new stations, and tested this by forecasting the

17Each parkway station is assumed to have a 40 km catchment divided into zones. A competing station must
lie within 40 km of at least one zonal centroid, thus this model is only suitable for journeys that are greater than
80km. Competing stations were ranked based on population and revenue weighted by distance for each origin
station, with the top 10 available as choices in the NL model.

18For example, in the reported case studies, the East Midlands Parkway model predicts 880 abstracted journeys
which is 0.5 of predicted new journeys; and in the Warwick Parkway case study, the model predicts 41,651
abstracted journeys from competing stations, which is 0.49 of predicted new journeys.
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probability of a passenger in a particular zone (census output area) using Aber station in
South Wales before and after the opening of a proposed new station at Energlyn. They
also outlined a potential method for converting these probabilities into the number of trips
abstracted from Aber by using the station choice model to allocate estimated annual trips
for each output area to the two stations, but did not propose a method to account for new
trips that might be generated by the new station. There are also a few examples of a limited
station choice element being introduced into regional strategic (four-stage type) models. Fox
(2005) developed a park-and-ride station choice model, where station choice is modelled for
car access mode only, that was incorporated into the Policy Responsive Integrated Strategy
Model (PRISM), a disaggregate demand model for the West Midlands region of the UK. A
similar model was later developed for the Sydney Strategic Travel Model (Fox et al., 2011).

3.7 Conclusions

Following a brief history of station choice modelling research in Section 3.2, Section 3.3
examined the theoretical underpinnings of both closed-form and simulation-based discrete
choice models, alongside a critical review of their application in research published over the
past 40 years. The vast majority of previous studies have adopted either MNL or NL models,
although recent work has begun to consider more complex approaches, such as the ML model.
However, there has been little recognition in this body of work that railway stations are
located in space, and that the use of standard choice models that are a-spatial in nature might
not be appropriate. It is a reasonable assumption that stations that are closer to each other in
space will be better substitutes for one another than stations that are further apart, following
Tobler’s (1970) first law of geography, that ‘everything is related to everything else, but near
things are more related than distant things’. It is therefore concerning that the NL model,
which is intended to address inappropriate patterns of substitution that occur in MNL models,
has been implemented in station choice models by including every station in the choice set
of every nest. This fails to address the substitution issue. If station choice models can be
developed that have more realistic substitution behaviour, they may be more accurate and
have greater transferability. While recent research is beginning to tackle this issue, solutions
applied in other fields, such as including an accessibility term or applying a specialist GEV
model, should also be explored in the station choice context. However, before developing
ever more complex explanatory models it is important that the predictive performance of the
simpler approaches is more rigorously assessed using measures consistent with probabilistic
choice models; and when more complex models are developed, it is essential that their
predictive performance is compared with simpler models so that an informed assessment of

the trade-off between complexity and performance can be made.

In Section 3.5 attention turned to the attributes that can help explain station choice behaviour.
It is clear that the direction effect of a range of factors related to accessibility and services
has been consistently reported across many studies. The evidence indicates that station
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utility decreases as the access journey becomes further or longer, as the rail leg journey
time increases, when the journey involves more transfers or has a higher fare, and when
service frequency is reduced. Establishing the effect of station facilities, such as car parking,
is more problematic, potentially due to endogeneity issues. While a number of important
explanatory variables have been identified, there is still potential to identify new ones. For
example, researchers have paid scant attention to the impact of land-use factors, and spatially
detailed land-use datasets, such as the Ordnance Survey’s ‘Points of Interest’ data in Britain,
are an untapped resource. There may also be gains in predictive performance with improved
measurement of the variables that have the greatest explanatory power, such as access journey
and rail service factors. This could be through better measurement of access journey time
by mode using route planning software, incorporating road speed information that could
identify congestion prone stations, or better alignment of survey trip data with train schedule

information so that the service available to each individual is better represented.

Issues surrounding the data used in station choice modelling was the subject of Section
3.4. While aggregate data has in some cases been used to model station choice, this has
been dictated by limitations of available data, rather than modelling needs. The preferred
option for future research is individual trip data where the ultimate origin (and destination if
required) is at a spatial resolution sufficient for the variability in explanatory factors between
decision makers to be revealed. In the UK, the unit postcode area boundary is probably
the maximum spatial unit of address aggregation appropriate. A definitive mechanism for
defining choice sets has not been established, and the methods adopted have been fairly
simplistic and not evidence-based. It is not clear, for example, what the implications are of
seeking to maximise the number of observed choices that are accounted for, when this may
add alternatives to the choice set that would never realistically be considered. Research is
needed to evaluate the different methods for generating choice sets for station choice models,

including an assessment of their impact on predictive performance.

The lack of integration with demand forecasting is a significant limitation of previous station
choice research that was highlighted in Section 3.6. This is important as the absence of a
choice-modelling methodology which can adequately capture patterns of abstraction and
competition between railway stations may have contributed to the limited accuracy of recent
demand forecasts for new stations in the UK (as discussed in Section 2.5). There has been a
very limited amount of work to explore the incorporation of probability-based catchments
into the traditional aggregate models, with the majority of previous studies narrowly focussed
on identifying the explanatory factors affecting station choice. The models proposed by
Lythgoe and Wardman (2004) and Lythgoe et al. (2004) are only suitable for forecasting
journeys of 40km or greater, and there has been limited work testing the transferability of
these models, an issue shared with much of the published research. Wardman and Whelan
(1999) were intending to incorporate probabilistic catchments into their direct demand
summation model, but faced issues caused by limited computer processing capability. Given
the substantial increase in computing power that has occurred since 1999, their general
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approach to defining probabilistic station catchments will be revisited as part of the research

presented in this thesis.

Chapter 2 established that the trip end model is the most commonly used model in the UK to
assess proposals for new local railway stations, and that the discrete and deterministic station
catchments defined in this type of model do not represent the complex reality of station
catchments revealed by empirical evidence. An alternative approach was then proposed that
would use models of station choice to define probability-based catchments. This chapter has
shown that while there is a substantial body of research related to station choice, this has
overwhelmingly focused on developing explanatory models relevant to specific local contexts.
There has been far less attention given to how these models perform in a predictive capacity
and how they might be used to improve the models, such as the trip end model, that forecast
passenger demand for new stations. As set out in the Introduction to this thesis, the aim
of this research is to develop a transferable station choice model that has the potential to
adequately predict station choice in most local situations in the UK, and to use that model to

incorporate probabilistic catchments into aggregate models of rail demand.

The next two chapters will describe the work carried out to obtain and prepare the data
necessary to build and estimate the station choice models. Chapter 4 is concerned with the
data that reveals actual station choices made by rail passengers, and Chapter 5 is concerned

with the data that can help explain those choices.



Chapter 4

Observed station choice data

4.1 Introduction

This chapter is concerned with the survey data that reveals observed station choice. This is a
key requirement for the calibration of discrete choice models, as it will represent the chosen

alternative in the dependent (choice indicator) variable.

The first part of the chapter deals with obtaining, preparing and validating suitable data.
Section 4.2 considers the type and nature of the data required and the sources that were
selected for this study; Section 4.3 describes procedures that were developed to maximise
the usefulness of the data by matching incomplete textual addresses to unit-level postcodes
and estimating the coordinates of origins/destinations known to be located on a specific
street; Section 4.4 considers how the data was checked and cleaned, and provides a detailed
breakdown of the adjustments that were made; and Section 4.5 explains the automated
process that was developed to ensure, as far as reasonably practicable, the validity of the

reported trips.

The second part of the chapter, Section 4.6, provides a descriptive analysis of the cleaned and
validated datasets, considering the nature of the access and egress journeys, with a particular
focus on transport mode used (Section 4.6.1); exploring the extent to which passengers choose
their nearest station (Section 4.6.2); and finally an analysis and visualisation of observed
station catchments revealed by the data (Section 4.6.3). The findings of the descriptive
analysis are discussed with reference to the methods adopted to define station catchments in
the aggregate demand models typically used to forecast demand for new stations (as covered
in Section 2.4.1). The chapter closes with a summary of the information presented and its

implications (Section 4.7).

81
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4.2 Passenger survey data

In order to develop disaggregate models of station choice, information is required about
individual trips via the rail network. To model choice of access station, this data needs to
include, at a minimum, the ultimate origin of the trip, such as home or work address, and
the station where a train was first boarded. If the models need to account for variables
related to the train leg, such as travel time or number of transfers, then the final egress
station is also needed, and possibly the ultimate destination of the trip. The data must also
be at a spatial resolution that is sufficient for the variability in explanatory factors between
individual decision makers, such as access distance, to be revealed. For UK-based research,
the unit postcode area boundary is probably the maximum spatial unit of address aggregation
appropriate for this type of analysis. The unit postcode is the most detailed spatial unit
available from postcode data in the UK, and for small postal users (i.e. not business addresses)
it typically represents around 15 addresses, although it is possible for it to contain up to 100

addresses in densely populated areas.

4.2.1 Data sources

Data from a series of on-train passenger surveys were obtained from the Welsh Government
(WG) and Transport Scotland’s Land-Use and Transport Integration in Scotland (LATIS) ser-
vice. These two datasets were chosen to increase the robustness of the models by maximising
the number of observed choice data points; to allow the predictive performance of models
calibrated using data from different regions to be compared; and to enable model transfer-
ability to be tested. The Welsh surveys were conducted in Spring 2015 and primarily covered
stations in South East Wales (Cardiff, Newport and the South Wales valleys) and Swansea.
The LATIS surveys were carried out in 2013 (a small survey), 2014 and 2015. While covering
stations throughout Scotland, they were concentrated in the Central Belt. In both cases the
survey questionnaires focused on the ‘current train’, asking for the boarding/alighting station
and the access/egress mode, along with questions about the ultimate trip origin/destination
and reasons for travelling. There were some supplementary socio-demographic questions,
including sex, age (WG only), and household car ownership (LATIS) or car availability (WG).
Prior to subsequent processing and validation the WG and LATIS surveys contained some
7,000 and 52,000 responses respectively, and were supplied in Microsoft Excel spreadsheet

format.

4.3 Address matching and estimation — LATIS data

The WG data had been through some data processing before it was supplied, and nearly all
observations included valid origin and destination unit-level postcodes. This was not the
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case for the LATIS data, where addresses had not been validated and many observations
had missing, incorrect or incomplete postcodes. For example, less than 50% of the origin
addresses included a valid unit-level postcode. Survey respondents are likely to know the
origin or destination postcode for some types of trip, such as those beginning or ending at
their home address, but not for others. In order to ensure that the dataset used in model
calibration was representative of a broader range of trip types, a procedure was developed
to match the incomplete address information to postcodes using the Ordnance Survey (OS)
AddressBase product which contains over 28 million UK addresses from Royal Mail’s postal
address file (PAF). The aim of this procedure was to either identify a specific postcode from
the provided address information or, failing that, to approximate the geographic location of

an address.

4.3.1 Survey data preparation

In order to conform with a privacy impact assessment agreed with Transport Scotland, a
procedure was adopted to ensure that at no point during address matching and data analysis
would the working dataset contain both detailed address information and other survey
response information. The survey data was saved to an encrypted partition on physical media
and the individual spreadsheets were merged to create a single CSV file for each year (from
now on referred to as the ‘complete’ CSV files). A unique ID was then assigned to each entry
in each of the complete CSV files. The origin and destination address fields only, along with
the unique ID, were then extracted to a separate ‘address matching’ CSV file for each year.
These files were used in the address matching process. Once the addresses had been matched
to postcodes or locations estimated, the other address fields were removed from these files.
All fields other than the address fields were then extracted from the complete CSV files, and
the matched postcodes or coordinates of estimated locations were merged from the address
matching CSV files based on the unique ID field, creating new ‘working’ CSV files that were

used in subsequent data cleaning and validation. This procedure is illustrated in Figure 4.1.

4.3.2 AddressBase database preparation

Using an R script, the 29 individual CSV files that formed the supplied AddressBase dataset
(dated 7 April 2016) were read into R and then appended to a PostgreSQL database table.
The resultant AddressBase table consisted of some 28 million rows, and 15 relevant fields
which were retained. The fields are listed in Table 4.1 along with an additional explanation
of their purpose where this is not clear from the field name (information on the AddressBase

structure was obtained from the technical specification document (Ordnance Survey, 2015)).

Several new fields, required for the address matching process, were then created using SQL

queries:
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FIGURE 4.1: Procedure followed to ensure compliance with the privacy impact assessment
during the address matching process.

* full_text_address and address_short — these were formed by concatenating

certain existing AddressBase fields, as indicated in Table 4.1.

* postcode_count — the number of unique postcodes for each distinct combination of
POST_TOWN, DEPENDENT _THOROUGHFARE, THOROUGHFARE, DEPENDENT_LOCALITY,
and DOUBLE_DEPENDENT_LOCALITY (from now on referred to as a ‘unique thorough-
fare’). The dependent thoroughfare and locality fields were included to limit the
problem of duplicate thoroughfare names within the same postal town. This may
not deal with identically named thoroughfares located within different postal districts
within the same city. In these cases the addresses are normally distinguished by the very
fact they exist in different postcode districts rather than by using dependent locality or
thoroughfare fields. For example, there are many instances of ‘College Road, London’,
that would be treated as the same street using this method of obtaining the postcode
count. On the very few occasions that this issue impacted streets within the survey
data it was detected during the address matching process, as these streets display an
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Field name Explanation Full text address  Short address
UDPRN Royal Mail’s unique delivery point refer- n n
ence number
ORGANISATION_NAME y n
DEPARTMENT NAME y n
PO_BOX_NUMBER n n
SUB_BUILDING NAME Property subdivision, e.g. Flat 10 y y
BUILDING_NAME y y
BUILDING_NUMBER y y
DEPENDENT THOROUGHFARE Name of an adjoining road used to dis- y y
tinguish thoroughfares with the same
name in a postal town
THOROUGHFARE A road with delivery points y y
POST_TOWN
DEPENDENT _LOCALITY Used to distinguish thoroughfares with y y

the same name in a postal town, where
no dependent thoroughfare
DOUBLE_DEPENDENT LOCALITY Used to distinguish thoroughfares with y y
the same name and in the same locality
within a postal town

POSTCODE n n
POSTCODE_TYPE Idenitifes if the postcode belongs to a

large or small user (as defined by Royal

Mail)
COUNTRY n n

TABLE 4.1: AddressBase fields retained in the PostgreSQL table, with explanation of their
purpose (where not obvious). Also shows which fields were concatenated to create the ‘full
text address’ and ‘short address’ fields.

unusually large maximum distance to the centroid of street postcodes (see max_d_2ct,
below). The query to generate this field is shown in PostgreSQL code segment B.1.1 in
Appendix B.

* stpc_cent_geom— this is the centroid of all the individual postcode centroids belong-
ing to each unique thoroughfare (from now on referred to as the ‘calculated centroid’).
The SQL query first identifies the set of postcodes for each unique thoroughfare, as
for the postcode_count field above, then ‘collects’ together the point geometries for
the centroids of these postcodes from a database table containing the ONS Postcode
Directory (ONSPD), and finally calculates the centroid of those centroids. The query to
generate this field is shown in PostgreSQL code segment B.1.2 in Appendix B.

* max_d_2ct — this is the maximum Euclidean distance from any of the individual
postcode centroids belonging to each unique thoroughfare to the calculated centroid for
that thoroughfare. The query collects together the point geometries for the centroids
of the set of unit postcodes for each unique thoroughfare, and then finds the maximum
Euclidean distance from any of these to the calculated centroid. The query to generate

this field is shown in PostgreSQL code segment B.1.3 in Appendix B.

The relationship between the postcode_count, stpc_cent_geom and max_d_2ct fields

is illustrated in Figure 4.2. If the calculated centroid is used to represent the location of an
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FIGURE 4.2: Postcode centroids for Ingram Street, Glasgow, showing calculated centroid
and maximum distance from calculated centroid to any postcode centroid.

origin or destination on a street, the maximum Euclidean distance indicates how far the ‘real’

address postcode centroid could be from that location.

4.3.3 Address matching process

The matching process was performed separately for each survey year and separately for

origin and destination addresses. The address matching CSV files for each year contained a

postcode field and three address fields for both the origin and the destination. The following

initial steps were carried out:

. The CSV file for each year was imported into an R data frame.

. The postcode field was checked against the ONSPD database table. Records with a

valid postcode were identified and filtered from the data frame.

. Any records where the three address fields were empty were filtered from the data

frame.

. For the remaining records an attempt was made to identify the postal town of the
provided address, by looking for an exact match within a list of distinct postal towns
obtained from the AddressBase table. Each of the three address fields was checked in

turn, with the last match recorded.

. For those records where the postal town could not be matched, an attempt was made
to match the postal sector identifier in the postcode field! to a list of unique sector
postcodes and their respective postal towns pulled from AddressBase. This was achieved
by stripping off everything including and after the first space in any string in the
postcode field. This approach is not 100% accurate, as it is possible for some sector
identifiers to cover more than one postal town (for example, KY11).

6. A full address field was generated by concatenating the three address fields.

!These will be incomplete or invalid postcodes which were not filtered out in step 2.
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7. Common abbreviations were amended or expanded to match the format used in
AddressBase. For example, ‘ST ANDREWS’ was amended to ‘ST. ANDREWS’ and ¢
GDNS ’ was replaced with * GARDENS .

8. Any full address which exactly matched a postal town (i.e. consisted only of a postal

town), was filtered from the data frame.

Due to the size of the AddressBase table it was not practical to perform a search of all
addresses for each record to be checked, as tests confirmed that each query could take several
minutes. Performing some 26,000 queries, at two minutes each, would have taken nearly
900 hours, or over a month, to complete. An alternative approach was therefore adopted
which limited the scope of the search. In the first instance the search was restricted to the
identified postal town of the record (obtained using the steps outlined above), and then for

any remaining unmatched addresses the search was restricted to addresses within Scotland.

For the postal town restricted search, for each unique postal town present in the data frame,

the following steps were performed (see R code segment A.4 in Appendix A):

1. A temporary database table of records from AddressBase with that postal town was

created.

2. A GIN index, a feature of the PostgreSQL pg_trgm module, was created for both the
full text and short address fields. These indexes allow fast similarity searches to be

performed.

3. For each record in the data frame with this postal town, a similarity search query
was performed using the pg_trgm module. This uses a trigram algorithm where the
number of trigrams (groups of three consecutive characters) that two strings share are
counted and a similarity index is returned that can range between 0 (strings completely
dissimilar) and 1 (strings match exactly) (The PostgreSQL Global Development Group,
2017). Using a union query, the top four results from two similarity searches on the full
and short address fields, ordered by the similarity index (descending), were retrieved.
Each of the results was written to the data frame along with other required database
fields?.

For all records where the postal town was unknown, or where an address was not found

using the similarity search described above?, the process was repeated but instead of creating

2AddressBase addresses may have organisation and department name fields populated, but this level of
detail may not have been provided by the survey respondents. This would have an impact on the accuracy of
the matching process. For example, if the respondent had provided: ‘180 Vincent Street Edinburgh’, but in
AddressBase this address was recorded as: ‘Company Name 180 Vincent Street Edinburgh’ it may not be returned
in the top matches. The short address field attempts to deal with this issue by excluding the company name and
department fields. This approach will find the top matches based on two queries that use different versions of
the AddressBase address field.

3The minimum similarity index was set at its default value of 0.3. Any address with a similarity index less
than this would not be returned.
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J L M N a P o R S T u | 1
1 | Crigin.Post Crigir Origin.posttown Crigin_full_sddress pt_check status chk M1l.s M1l.add M1.pc M1.pcnt M1.maxd2ct M1.stpoc
2 |EH12 N EDINBURGH 67 SOUTH GYLE EDINBURGH N n l 0.83 &7 SOUTH GYLE PARK EDINBURGH EH1Z2 SEW 2 23 55.93433,-2.30142
3 i N EDINBURGH WAVERLEY STATION EDINBURGH N ¥ 0.77 WAVERLEY RAILWAY STATION EDINBURGH EH1 1BB MA Ma A NA
4 |EH3 N EDINBURGH CORNWALLIS PLACE EDINBURGH N ¥ 0.33 6 CORNWALLIS PLACE EDINBURGH EH3 &NG 1 0 55.36108,-3.15477
5 |EHZ N ECINBURGH ‘3 MOMNCREIFF TERRACE EDINBURGH N ¥ l 0.76 99 MONCRIEFF TERRACE EDINBURGH EHZ 1NB 3 24 55593507,-3.13391
B G281 N CLYDEBANK DALMUIR N n 0.21 9C DALMUIR COURT CLYDEBANK GB14AB 2 0 55.91034,-4.42674
T i N unknown WALDORT ASTOMA EH1 N EH1 ZAB [ES MA MA MA Ma MA
g | N unknown SOUTH GYLE N n 0.3% 550UTH GYLE LOAN EDINBURGH EH12 3EN 1 @ 55.835,-3.30115
3 [Kys N COWDENBEATH 33 NETHERTON ROAD COWDENBEATH N ¥ l 1 33 METHERTON ROAD COWDEMBEATH K¥4 SBF 2 154 56.11924,-3.35454
0 N EDINBURGH EBLEMHEIM PLACE EDINBURGH N ¥ 0.79 & BLENHEIM PLACE EDINBURGH EH7 5JH 1 0 55.95753,-3.18364
1 _|EHZ N EDINBURGH CANONGATE EDINBURGH N n l 0.81 3 CANONGATE EDINBURGH EHE EBX 17 313 55.95153,-3.17962
12 |Hus N HULL 24 LABURNUM AVENUE HULL N n 0.63 2 THE GROVE LABURNUM AVENUE HULL HUE 3P0 1 0 53.76416,-0.31555
13 |EH14 N ECINBURGH NHS ROBBS LOAN EDINBURGH N ¥ l 0.64 NHS LOTHIAN 47 ROBB'S LOAN EDINBURGH EH14 148 7 155 55.93099,-3.2473
14 N unknown HAYMARKET N n 0.5 HAYMARKET EDINBURGH EH12 SEY 1 0 55.94564,-3.2183
15 i N DUMNFERMLIMNE JANMES STREET DUNFERMLINE N P 0.89 19 JAMES STREET DUMNFERMLINE KY12 TQE 2 63 56.07203,-3.45626
16 | N EDINBURGH 'GORGIE ROAD EDINBURGH N n 0.87 1GORGIERDAD EDINBURGH EH113Z2LA 40 1175 55.33562,-3.23578
7| N ECINBURGH NATIONWIDE GEORGE STREET EDINBURGH N ¥ 0.76 NATIONWIDE BLDG S50C 71 GEORGE STREET EDINBURGH EHZ 3EE 26 393 55.95306,-3.19938
18 |EHT N EDINBURGH EAST EDINBURGH N n 0.71 EDINBURGH EH1Z 1EF  NA NA NA,NA
13 |EH12 N EDINBURGH HUDSON HOUSE ALBANY STREET EDINBURGH N ¥ 0.85 HUDSON HOUSE 8 ALBANY STREET EDINBURGH EH130B 3 113 55.85724,-3.191138
20 |[KY7OGZ N KIRKCALDY 24 5COTT AVENUE KIRKCALDY N n 0.65 24 HAIG AVENUE KIRKCALDY K¥1ZIE 2 67 56.12835,-3.14505
21 |EH8 N ECINBURGH ‘GEORGE SQUARE EDINBURGH N 1] 0.82 7 GEORGE SQUARE EDINBURGH EHBSIZ & 127 55.54346,-3.13845
22 | N unknown UNIVERSITY OF EDINBURGH BUCCLEUCH STREET N ¥ 0.68 UNIVERSITY OF EDINBURGH 15 BUCCLEUCH PLACE EDINI EHE SLN 2 86 55.94287,-2.18603
le N EDINBURGH SCOTTISH GOVERNMENT REGENT ROAD EDINBURGH N EH1 3DG 0.63 SCOTTISH GOVERNMENT 47 ROBB'S LOAN EDINBURGH EH141TY 7 155 55.83099,-3.2473
24 | N unknown HOLROYD PARK QUEENS DRIVE EDIMBURGH N Vi 0.4 HOLYROOD PARK EDUCATION CENTRE 1 QUEEN'S DRIVE EHE BHG 1 @ 55.35368,-3.16769
25 |EHE N ECINBURGH 2F1/1 CONNELLY BAMK ROAD EDINBURGH N ¥ 0.64 2F191 COMELY BANK ROAD EDINBURGH EH4 1Bl 11 362 55.95396,-3.22064
26 |EH1 N EDINBURGH PRINCES STREET EDINBURGH N n 1 PRINCES STREET EDINBURGH EH2 2El 23 654 55.95221,-3.19678
qu N EDINBURGH WGH CREWE ROAD EDINBURGH N P .73 2/2 CREWE ROAD WEST EDINBURGH EHS 2FPB 7 228 55.97455,-3.2396

FIGURE 4.3: Extract from address matching spreadsheet used for manual review of addresses with the highest similarity index from AddressBase. This

example only shows the top matching address for each row (column ‘M1.add’).
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a temporary postal town table, a table of all addresses in Scotland was used for the similarity
search. When both searches were complete, those records in the data frame with potential
matching addresses were exported from R to a CSV file. The CSV file was then imported into
Microsoft Excel and an automated colour-coding system was used to aid a manual review

process, using the following key criteria:

1. Correctly matched postcode accepted where possible.
2. If street name matched but house number/business name not matched:

(a) if street has a single postcode: postcode accepted.

(b) if street has more than one postcode: if max_d_2ct is <= 250m, use the co-
ordinates of the calculated street centroid (stpc_cent_geom) as the origin or
destination location.

An example section of the matching spreadsheet is shown in Figure 4.3. Some manual
look-ups using Google search and/or Google Maps were carried out for common addresses
that could not be matched but were unambiguous, for example where just the name of a shop
or hotel was provided. After the manual check was complete, the spreadsheet was ordered by
max_d_2ct (descending). As mentioned earlier, a limitation in the process of identifying the
postcodes that relate to a specific street can result in postcodes from multiple streets within
the same postal town that have the same name being grouped together. This is especially
common in London, where roads with the same name would normally be differentiated
for postal purposes by postcode district. When this occurs, it produces an excessively large
max_d_2ct value. This effect proved useful in identifying a few instances where the street
name provided by the survey respondent was unknowingly ambiguous (because it occurs

more than once in a town), and in these cases the match was rejected.

Once the address matching was completed, post-processing was carried out in R before
the matched postcodes and estimated location coordinates were merged into the original
survey data (as described in Section 4.3.1 and illustrated in Figure 4.1.). Figures 4.4 and 4.5
summarise the address matching process for trip origins in 2014 and 2015 respectively, while
Figures 4.6 and 4.7 summarise the address matching process for trip destinations in 2014 and
2015 respectively. It was not necessary to apply the address matching process to the small
2013 survey. In total, the address matching process resulted in a 31% increase in the number
of validated trip origins, and a 58% increase in the number of validated destinations. The
LATIS survey data that was taken forward to the data cleaning and validation stages consisted

of those records with both a valid origin and destination — a total of 19,951 records.



90

Chapter 4 Observed station choice data

2014 for origin address matching: 19,564 ‘

| 9460 |
Empty address
field (2515
\ 4
| 6945 |

Only post town
(1396)

ONSPD postcode
match (10,104)

\ 4

\ 4
| To match: 5549 |

AB postcode
match (2838)

Street pc centroid

\ 4
| Unmatched: 1960 |

Validated origin: 13,693 ‘

FIGURE 4.4: Address matching — LATIS

2014 Origins.

2014 for destination address matching: 19,564 ‘

ONSPD postcode
match (5492)

A 4

2015 for origin address matching: 30,380 |

| 15,998 |
Empty address
field (6172
4
| 9826 |

Only post town
(3474)

ONSPD postcode
match (14,382)

Y

\ 4
| To match: 6352 |

AB postcode
match (3056)

Street pc centroid

4
| Unmatched: 2350 |

Validated origin: 18,384 |

FIGURE 4.5: Address matching — LATIS

2015 Origins.

2015 for destination address matching: 30,380 |

ONSPD postcode
match (8274)

A 4

| 14,072 |
Empty address
field (4240)
A4
| 9832 |

Only post town
2596

| 22,106 |
Empty address
field (8057)
\4
| 14,049 |

Only post town
6891

Y

| To match: 7236 |

\ 4
AB postcode
match (3027)

Street pc centroid
(980)

\4
| Unmatched: 3229 |

Validated destination: 9499 ‘

FIGURE 4.6: Address matching — LATIS

2014 Destinations.

Y

| To match: 7158 |

\ 4
AB postcode
match (2926)

Street pc centroid
(1067)

\4
| Unmatched: 3165 |

Validated destination: 12,267 |

FIGURE 4.7: Address matching — LATIS

2015 Destinations.



Chapter 4 Observed station choice data 91

4.4 Data cleaning

It was necessary to clean both the WG and LATIS survey data. This process was automated
using R scripts. Data was checked and manipulated either using R data types and tools or,
once the data had been written to a PostgreSQL database table, by running appropriate SQL
queries from within R, using the RPostgreSQL package (Conway et al., 2016). This approach
means that the entire cleaning process was transparent and reproducible and the data for
model inputs can be generated again from the raw data.

4.4.1 WG data

The WG survey data had already been through some data processing prior to being supplied.
Each observation had an apparently valid ultimate origin and destination unit-level postcode,
and each spreadsheet contained separate sheets labelled: ‘clean’, ‘illogical’ and ‘reversed’.
However, when the ‘illogical’ and ‘reversed’ sheets were reviewed it was not always apparent
why a trip was considered ‘reversed’ or ‘illogical’. In addition, some trips on ‘clean’ sheets
were found to be illogical. All the trips on ‘illogical’ and ‘reversed’ sheets were manually
reviewed and where it was not obvious why they had been excluded, they were copied to
the ‘clean’ sheet. All the ‘clean’ sheets were saved in CSV file format and then combined into

a single CSV file which was imported into R.

A number of criteria were applied to check the supplied data, resulting in either amendments
to, or the removal of, observations from the dataset. Origin and destination station names
were matched against station names in the National Public Transport Access Nodes (NaPTAN)
database. A list of unique station names that could not be automatically matched was
manually reviewed, and where the intended station name was unambiguous the correct
name was recorded in a look-up table which was then used to correct station names in
the dataset. Those observations with origin or destination station names that could not be
matched were removed. A number of observations were removed because the origin or
destination postcode was not located on the mainland and it would not be possible to derive
access and egress variables for these using the trip planner (discussed in Section 5.2)%. To
limit the amount of public transit schedule data that needed to be incorporated into the trip
planner, observations where the origin postcode was not in Wales were also removed. Any
observations where the access or egress mode was given as ‘another train’ (respondents were
asked for their access and egress mode in respect of the ‘current train’ they were travelling on
when questioned) were removed, as it was not possible to determine the initial boarding and
alighting station for these trips. The full range of adjustments made to the dataset during
cleaning are detailed in Figure 4.8.

“The location of each postcode in respect to a range of administrative boundaries is recorded in the ONSPD.
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FIGURE 4.8: Adjustments made to the WG survey data during cleaning.

4.4.2 LATIS data

A number of criteria were applied to check the supplied data, resulting in either amendments
to, or the removal of, observations from the dataset. Origin and destination station names
were validated using the procedure described for the WG dataset. A variety of other data
checks were carried out, including removing observations where the access or egress mode
was not provided and where the origin station was the same as the destination station. In
some cases multiple access or egress modes were recorded. This was a particular issue in
the 2015 survey, as respondents were not asked to provide the ‘main’ mode used. When two

modes were provided the following rules were followed to assign the main mode used:

¢ Where the two modes were motorised and non-motorised, the motorised mode was
assumed to be the main mode.
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* Where the two modes were walk and cycle, cycle was assumed to be the main mode.

e Where the two modes included ‘other’ and a non-motorised mode, ‘other’ was assumed

to be the main mode.

Any remaining observations with multiple access or egress modes were removed from the
dataset. To limit the amount of public transit schedule data that needed to be incorporated
into the trip planner, only those observations where the origin was located in Scotland were
retained. In addition, any observations with origins or destinations located on islands without
road access to the mainland were removed, as it would not be possible to generate access
and egress variables for these using the trip planner. The full range of adjustments to the
LATIS dataset during cleaning are detailed in Figure 4.9.

4.5 Automated trip validation

Due to the large number of survey observations in the WG and LATIS datasets it was not
practical to manually check each one to ensure the reported trip was sensible. An alternative
strategy was adopted that generated information inherent in the reported trip and used that
to automatically validate the trip. This approach was used to identify excessively long station

access and egress legs, and unrealistic trips, as detailed below.

4.5.1 Excessive access or egress legs
4.5.1.1 Walk time

For each observation in the cleaned WG and LATIS datasets, a trip planner (see Sections
5.2 and 5.3) was used to obtain the walk time in minutes from the ultimate trip origin to
the origin (boarding) station; and the walk time in minutes from the destination (alighting)
station to the ultimate destination. A histogram and kernel density plot was then produced
for access time (Figure 4.10) and egress time (Figure 4.11) using 5-minute bins. Based on
the observed distribution, any observation with walk-mode access and/or egress time in
excess of 60 minutes was removed from both datasets. This cut-off point felt intuitively
appropriate, in addition to being supported by the data. Access or egress times in excess
of 60 minutes will largely be due to errors in the survey data. It is possible that some long
journeys are genuine, for example if a passenger travels by train to begin a day’s walk via the
public footpath network to their destination. However, the models being developed in this
project will not be able to predict station choice for this type of trip and their exclusion will

have a positive rather than negative effect on model performance.
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FIGURE 4.9: Adjustments made to the LATIS survey data during cleaning.
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FIGURE 4.11: Histogram of station egress time for walk mode with kernel density plot.

4.5.1.2 Distance

Once the observations with walk access or egress time in excess of 60 minutes had been
removed form both datasets, histogram and kernel density plots were produced for station
access distance (Figure 4.12) and egress distance (Figure 4.13). Based on the observed
distributions, trips with access or egress legs in excess of 70km were removed from the WG
dataset, and those in excess of 200km were removed from the LATIS dataset. The distribution
of access and egress distance is skewed further to the right in the LATIS dataset. A random
review of some observations with access and egress legs of this magnitude, indicated that
these could be valid trips. For example, someone travelling from a remote part of the

Highlands and Islands might choose to drive into Inverness to begin their rail journey.

4.5.2 Illogical trips

There are two main types of illogical trips that are observed in this type of data. The first is the
so-called ‘reversed trip’ where the origin station is located close to the ultimate destination,

and the destination station is located close to the ultimate origin. The second occurs when
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FIGURE 4.13: Histograms of station egress distance with kernel density plot.

there is a substantial ‘back-track’ from the reported destination station towards the trip origin.
A range of ratios were tested on the WG dataset, using measures of components of the trip
generated by the trip planner, that might reliably identify these illogical trips. Two ratios
were found to be particularly effective.

The first, the RV ratio, captures the ‘reversed trip’ effect and is the distance from origin
postcode to destination station over the distance from origin postcode to origin station, as
shown in the following equation:

_ D(op, ds)

RV = ,
D(op, 0s)

4.1
where D is distance in km, op is origin postcode, ds is destination station, and os is origin
station. The closer the ratio is to zero, the more pronounced the reversal effect becomes (see
the illustrative example in Figure 4.14).

The RV ratio was calculated for each observation in the WG (clean) dataset and for ratios
< 0.5, where the distance from the origin postcode to origin station is more than double

the distance from the origin postcode to the destination station, the trips were visualised in
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QGIS. Figure 4.16 shows example trips with RV ratios of 0.04 and 0.41. One observation,
with an RV ratio of 0.49, was considered a plausible trip, while the remaining observations
with an RV ratio < 0.5 were removed from the WG dataset (a total of 20).

(A) RV ratio of 0.04 (B) RV ratio of 0.41

FIGURE 4.16: Example trips with stated RV ratios.

The second, the BT ratio, captures the ‘back-track’ effect and is the distance from origin
postcode to destination postcode over the distance from origin postcode to destination station,

as expressed in the following equation:

_ D(op,dp)

BT =
D(op,ds)’

4.2)
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where dp is destination postcode. The closer the ratio is to zero, the more pronounced the

back-track effect becomes (see the illustrative example in Figure 4.15).

The BT ratio was calculated for each remaining observation in the dataset (after the RV ratio
validation), and for ratios < 0.5, where the distance from origin postcode to destination
postcode is less than half the distance from origin postcode to destination station, the trips
were visualised in QGIS. Figure 4.17 shows example trips with BT ratios of 0.01 and 0.27.
Two observations, with BT ratios of 0.41 and 0.45, were considered plausible trips, while the
remaining observations with an RV ratio < 0.5 were removed from the WG dataset (a total
of 30).

(a) BT ratio of 0.01 (B) BT ratio of 0.27

FIGURE 4.17: Example trips with stated BT ratios.

For both the RV and BT ratios, the distance measures were obtained from the trip planner for
walk mode. This was found to give more consistent results than using drive mode, primarily
because the latter can produce longer circuitous routes caused by one-way systems that mask
the relative geographical positioning of origins and destinations that the ratios are intended to
detect. To establish the effectiveness of the steps taken to remove illogical trips, 100 random
observations were selected from the WG dataset (after removal of trips as determined by the
RV and BT ratios) and their reported trips were individually visualised in QGIS. All 100 trips
were considered logical. Based on the findings from working with the WG dataset, all trips
with RV and BT ratios < 0.5 were automatically removed from the LATIS dataset. Due to the
larger size of this dataset it was not considered practical to individually verify these trips by

visualising them in QGIS.

Figures 4.18 and 4.19 detail the adjustments made to the WG and LATIS datasets as a result
of the automated trip validation process. In the case of the LATIS dataset the observations
with illogical trips were removed prior to removing those with excessive access or egress legs.
When the methodology was first developed and tested using the WG dataset, the illogical
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trips were removed after observations with excess walk-time legs had been removed. It was
considered a more robust approach to produce the kernel density plots used to identify the
appropriate cut-off points for excessive access and egress legs after the illogical trips had
been identified and removed. In addition, observations from questionnaires completed on or
after 6 September 2015, when the new Borders Railway line opened towards the end of the

2015 survey period, were removed from the LATIS dataset.

’ WG (clean) 6615 ‘ ’ LATIS (clean) 12,757 ‘
Walk access time > 60 RV and/or BT ration < 0.5
minutes(265) (566)
A 4 4
’ WG (validated) 6350 ‘ ’ LATIS (validated) 12,191 ‘
Walk egress time > 60 Walk access time > 60
minutes (402) minutes (418)
v v
’ WG (validated) 5948 ‘ ’ LATIS (validated) 11,773 ‘
) Walk egress time > 60
44 RV ratio < 0.5 (20) ‘ 4){ minutes (499) ‘
4 A 4
’ WG (validated) 5928 ‘ ’ LATIS (validated) 11,274 ‘
BT ratio < 0.5 (30) Access distance > 200km
(29)
4 A 4
’ WG (validated) 5898 ‘ ’ LATIS (validated) 11,245 ‘
Access distance > 70km Egress distance > 200km
(17) (167)
v v
’ WG (validated) 5881 ‘ ’ LATIS (validated) 11,078 ‘
Egress distance > 70km Questionnaire completed on
(28) or after 06/09/2015 (242)
A 4 A 4
’ WG (validated) 5853 ‘ ’ LATIS (validated) 10,836 ‘
FIGURE 4.18: Trip validation adjustments FIGURE 4.19: Trip validation adjustments
made to the WG dataset. made to the LATIS dataset.

4.6 Descriptive analysis

4.6.1 The access and egress journey

The observations in the cleaned and validated datasets were disaggregated by access and
egress mode. The breakdown of observations by mode, along with average access and egress
distances for each mode are presented in Tables 4.2 and 4.3, while histograms of access and

egress mode are shown in Figures 4.20 and 4.21.

Walk is by far the dominant means of station access and egress, followed by car and then

public transport. A somewhat higher proportion walked to or from the station in the WG
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Access leg Egress leg
Mode No. % Avg. dist. (km)? No. % Avg. dist. (km)?!
Walk 3393 58.0 1.13 4235 724 1.14
Cycle 119 2.0 3.19 104 1.8 2.85
Car (parked) 849 14.5 6.04 332 5.7 5.69
Car (dropped) 815 13.9 5.79 516 8.8 6.71
Taxi 263 4.5 3.57 200 3.4 4.53
Bus/Coach 388 6.6 6.03 281 4.8 6.41
Motorcycle 8§ 0.1 10.85 6 0.1 4.4
Other 18 0.3 5.67 79 3.1 6.19

! In all cases street distance measured using walk mode

TABLE 4.2: Observed trips disaggregated by access and egress mode — WG dataset.

Access leg Egress leg
Mode No. % Avg. dist. (km)? No. % Avg. dist. (km)?!
Walk 5596 51.7 1.06 6858 63.3 0.97
Cycle 269 2.5 6.18 220 2.0 5.68
Car (parked) 1271 11.7 11.59 802 7.4 16.76
Car (dropped) 1933 17.9 9.43 1191 11.0 10.63
Taxi 521 4.8 8.22 690 6.4 13.28
Bus/Coach 1006 9.3 10.92 839 7.8 11.76
Subway 201 1.9 4.93 169 1.6 6.31
Other 34 0.3 37.34 62 0.6 28.89

! In all cases street distance measured using walk mode

TABLE 4.3: Observed trips disaggregated by access and egress mode — LATIS dataset.

dataset (58% and 72%) compared to the LATIS dataset (52% and 63%). While the same
proportion drove to, or were dropped-off at, the station in both cases (around 28%), public
transport access (bus, coach or subway) is more important in the LATIS dataset (11.2%
compared to 6.6%). A similar difference is seen for the egress leg, where public transport
accounts for 9.4% of LATIS journeys, but only 4.8% of WG journeys. Although both datasets
have a similar average access and egress distance for walk mode (around 1km), the average
distances for other modes are noticeably higher in the LATIS dataset. This is as expected,
given that the distribution of non-walk access and egress distances is skewed further to the
right in the LATIS dataset, as discussed in Section 4.5.1. The average access and egress
distances are particularly high for the ‘other’ category in the LATIS dataset, and this appears
to be largely the result of several respondents using ferry or boat to travel from islands to the
mainland, resulting in particularly long journeys when measured on the road network (via

an alternative road bridge).
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It is interesting to note that a higher proportion walked and a lower proportion used the
car for the egress journey compared to the access journey in both datasets, with the effect
more pronounced in the WG dataset. It should be borne in mind that the survey data does
not consist of a uniform type of trip. For example, it is not limited to trips originating at
the respondent’s home address. For some trips the access journey will be from home to a
station, while for other trips the access journey will be from a place of work to a station
(and similarly for the egress journey). To explore whether the mix of trip types within the
datasets could help to explain some of the findings discussed above, the observations were
disaggregated by the nature of the origin and destination® (see Table 4.4). The analysis
reveals that 62% of respondents in both datasets began their journey at home, and only
30% (WG) and 41% (LATIS) were travelling home. This indicates that the datasets do not
contain a balanced set of trips (more people are leaving home than returning home). This
may explain why a higher proportion of respondents used walk mode, and a lower proportion
used one of the car modes, for the egress journey compared to the access journey, as this
would be intuitively expected. A car is much more likely to be available at the home end of a
journey and travellers are more likely to be reliant on walking from the egress station when

the destination is not their home.

To further investigate the potential reason for an imbalance in the trip types, frequency
histograms were produced for the time of travel® (see figures 4.22 and 4.23). The histograms
reveal that more surveys were carried out in the morning peak for both datasets, which would
explain the higher proportion of trips with home as the origin. After the morning peak, the
WG surveys were fairly evenly spread throughout the remainder of the day, while their were
fewer LATIS surveys during the rest of the morning and the afternoon, before another large
peak in the evening. This probably accounts for the greater proportion of workplace origins
in the LATIS dataset (31%) compared to the WG dataset (18%), the correspondingly higher
percentage of respondents returning home (41% compared to 30%), and fewer shopping and
leisure-related origins (< 4% compared to > 14%). Indeed the LATIS dataset is dominated
by home and work origins, which account for 93% of trips, compared with 80% in the WG

dataset.

To establish how representative the mix of access and egress modes observed in the survey
data is of rail trips in general across the UK, it was compared with data collected by the
National Rail Passenger Survey (NRPS) during the first quarter of 2015 (Transport Focus,
2015a). Although the primary focus of the NRPS is to assess customer satisfaction with rail
services and facilities, it also asks respondents what methods of transport they used to get to
and from the ultimate origin and destination station of their journey. The Spring 2015 NRPS
covered all of GB and consisted of some 30,000 responses (for more background information

about the survey see Transport Focus (2015b)). The data is presented as a bar graph in

5The WG questionnaires asked the ‘reason for being at the origin or destination’ and the LATIS questionnaires
asked ‘where have you come from?’ and ‘where are you travelling to?’. The response options varied slightly and
have been grouped into wider categories in the summary table.

5This is taken as the interview time for the WG dataset and the service start-time for the LATIS dataset.
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Origin Destination

WG LATIS WG LATIS
Reason No. % No. % No. % No. %
Home or other accommodation 3652 62.40 6715 62.00 1775 30.33 4445 41.04
Usual workplace (or work-related) 1027 17.55 3326 30.71 2253 38.49 4361 40.26
Education 348 5.95 277 2.56 335 5.72 484 4.47
Shopping 215  3.67 49 045 367 6.27 184 1.70
Other (e.g. leisure, tourism, personal) 611 10.44 325  3.00 1123 19.19 1218 11.25
Unknown 0 0.00 139 1.28 0 0.00 139 1.28
Total 5853 10831 5853 10831

TABLE 4.4: Reason for respondent being at trip origin or going to trip destination.

Figure 4.24. Unfortunately it is not possible to directly compare the mode breakdown shown
in this figure with that shown for the survey data in Figures 4.20 and 4.21. This is because
the NRPS includes overground (national rail) services as one of the access/egress mode
options, and these were removed from the WG and LATIS datasets during data cleaning (as
discussed in Section 4.4); and because NRPS respondents were not restricted to specifying
only the main mode used (i.e. the sum of the mode percentages in Figure 4.24 exceeds 100).
However, it does suggest that the mode split observed in the revealed preference data is
broadly consistent with the mode split observed across the country. The NRPS is dominated
by respondents using trains in London and the South East (63% of respondents), and this

will account for the higher mode share for subway compared with the study datasets.
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FIGURE 4.22: Histogram of interview FIGURE 4.23: Histogram of service time
time for WG observations. for LATIS observations.

4.6.2 Rank of chosen station

It is an assumption of the catchment definitions used in the aggregate demand models
discussed in Section 2.4.1, that rail passengers choose their nearest station. To explore the
extent to which this reflects reality, the 30 closest stations to each survey origin were identified
and then ranked by drive distance. The process for identifying the candidate stations and

measuring the distances is described in detail in Section 6.3.
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FIGURE 4.24: Reported modes used to access and egress stations (GB), from National Rail
Passenger Survey, Spring 2015. Note: As respondents can select more than one mode, the
sum of percentages exceeds 100. (Transport Focus, 2015a)

The percentage of observations choosing a station of each distance rank, for all access modes
and disaggregated by the predominant access modes (walk, car and bus), is shown in Figures
4.25 and 4.26 for the WG and LATIS datasets respectively. Considering all modes, 69% of
WG and 63% of LATIS respondents boarded the train at their closest station (as measured by
drive distance). However, this overall figure disguises substantial differences between access
modes. A far greater percentage of those who walked to the station chose their nearest one
(WG: 81% and LATIS: 75%), while only around half of those driving or being dropped by
car (WG: 52% and LATIS: 55%) or using the bus (WG: 48% and LATIS: 45%) selected their
nearest station. While 95% of travellers who accessed the station by foot chose a station
ranked below 5th (WG) or 6th (LATIS), for car and bus users the rank of station by which
95% of traveller’s choice was accounted for was much higher, as indicated by the shallower
cumulative percent curves. It is also interesting that a small (but not insignificant) proportion
of bus and car passengers chose a station ranked below 20, for example 15% of those taking
the bus in the LATIS dataset. One possible explanation is that a search in all directions
from the origin picks up many small and medium sized stations which are being ignored
by the traveller in preference to a more distant large inter-city station. This has potential
implications for the selection of stations for an individual’s choice set, suggesting that the

definition may need to be more nuanced than one simply based on x nearest stations.
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4.6.3 Observed station catchments

As discussed in Section 2.4.1, the catchment definitions used in aggregate demand models
assume that station choice is a deterministic process, that there is only one station that
everyone within a zone will choose, and that station catchments are therefore discrete
entities that do not overlap with one another. The large number of observations available
in the datasets used in this study made it possible to create approximate representations of
actual station catchments to test the validity of these assumptions. Given that the validated
datasets consisted of over 300 distinct origin stations, an automated process was developed
to generate the catchments using an R script and associated spatial database queries. The
main steps performed for both the WG and LATIS datasets separately are summarised below
(see R code segment A.5 in Appendix A):

1. For each distinct origin station, a temporary database table was created to hold the

origin coordinates for all observations with that station as the origin station.

2. A polygon around the set of origins was created using the ST_ConcaveHull function
(The PostGIS Development Group, 2017). This function is often described as placing a
shrink wrapping that encloses the set of points, with the amount of ‘vacuum sealing’
controlled by the target percent parameter. A target of 0.99 was specified, after
comparing the results obtained using a target of 0.99 and 0.98 on the polygon for
Inverness station (see Figure 4.27). It was considered that the 0.98 catchment, although
correcting for the 0.99 catchment extending over the sea in the North East, otherwise
produced an odd shape catchment with gaps over land that are more likely to reflect

the limitations of survey size than areas that are outside of the station’s true catchment.

3. The polygon was written to a database table storing all the station catchment polygons
for the dataset.

(A) Target set to 0.99 (B) Target set to 0.98

FIGURE 4.27: Polygons encompassing trip origins with Inverness as origin station using
ST_ConcaveHull function and stated target values.
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WG LATIS

No. of catchments No. % No. %

1 9287 18 16964 11
2 10214 20 9596 6
3 9409 18 16331 11
4 6663 13 15373 10
5 3834 8 12215 8
6 3255 6 11662 8
7 2528 5 13738 9
8 2512 5 16257 11
9 1478 3 15443 10
10 1173 2 11133 7
11 647 1 8208 5
12 43 0 1823 1
13 1 0 758 1
14 0 0 261 0
15 0 0 4 0
Total 51044 100 149766 100

TABLE 4.5: The number of unit postcode polygons that are intersected by x (1-15) station
catchments for the WG and LATIS datasets.

After creating the catchment polygons, to obtain further insight into the potential heterogene-
ity of station choice within zones, a spatial analysis was carried out to identify the number
of station catchments that each postcode falls within. This involved identifying the set of
distinct postcode polygons (from the OS Code-Point with Polygons dataset) that intersect
any of the station catchments (as produced above) and then counting the number of unique
catchments intersected by those postcode polygons (see R code segment A.6 in Appendix A).
The outline of the station catchments and the postcode polygon catchment counts were then
visualised using QGIS and a choropleth map was produced for each (See Figures 4.28 and
4.29). The breakdown of postcode polygons by the number of station catchments in which
they fall is shown in Table 4.5. The complex interaction of the catchments is clearly apparent
and there is little evidence to support the notion of stations having discrete non-competing
catchments. Even for areas that appear to be only within a single catchment (for example
parts of the Scottish Highlands and the west of Wales), this is due to the limited scope of the
passenger surveys. For example, passengers choosing stations on the Inverness to Thurso
and Wick line, the Inverness to Kyle of Lochalsh line, stations west of Swansea (apart from
Carmarthen) and stations on the Heart of Wales line, are not represented. Even with these
limitations, 62% (WG) and 83% (LATIS) of postcode polygons are within 3 or more station
catchments, and 4% (WG) and 15% (LATIS) are within 10 or more catchments.
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FIGURE 4.28: Approximate observed station catchments generated for the WG validated dataset, with each postcode classified to show the number of station
catchments that it intersects.
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FIGURE 4.29: Approximate observed station catchments generated for the LATIS validated dataset, with each postcode classified to show the number of
station catchments that it intersects
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4.7 Conclusions

The first part of this chapter described the sources of observed station choice data used
for this study and the procedures that were applied to prepare, clean and validate them.
As part of this process several potentially novel approaches were developed that may have
wider applicability to other researchers conducting research using similar survey data. These
are the matching of incomplete textual address information to unit-level postcodes; the
estimation of coordinates of an origin or destination known to be located on a particular
street, based on the spatial relationship of the set of postcode centroids for that street; and
an automated system to identify the two types of illogical trip that are common in this type
of survey data, using information inherent to the reported trip. These approaches maximise
the usefulness of data that is very expensive to gather (observations are not discarded due
to missing postcodes); ensure a broader range of trip types are represented (they are not
limited to the type of trip where the respondent is likely to know the address postcode); and
efficiently identify errors in the self-reported trips (which would otherwise be overlooked or

subject to a very costly manual review process).

The second part of this chapter used descriptive analysis techniques to examine some key
aspects of observed station choice revealed by the survey data. The mix of access and egress
modes present in the survey data was found to be broadly consistent with the national picture,
suggesting that, from this perspective, it might be suitable for calibrating models that can
be usefully applied beyond the study areas. However, both datasets were found to have an
imbalance of trip types, with almost two-thirds originating at home. An examination of the
distance-rank of the chosen station revealed that although in the majority of cases the nearest
station was chosen, a substantial proportion of respondents chose to board their train at a
more distant station, especially those accessing the station using a motorised mode. This
was followed by a spatial analysis that constructed approximate observed station catchments
for the stations present in the survey data. This revealed that a substantial proportion of
postcode polygons are located within more than one estimated station catchment, with many
in considerably more. These findings undermine the simple catchment definitions that are
used in the aggregate demand models typically applied to forecast demand for new local
stations in the UK, and support the objective of this study to develop a more sophisticated

methodology that better represents the complex nature of station catchments.

This chapter has focussed on one of the key inputs required for any discrete choice model, the
observed choice. The next chapter is concerned with the attributes that might help explain
this observed choice behaviour, and how these were derived from a range of disparate open

data sources.
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Station choice predictor variables

5.1 Introduction

This chapter describes the potential predictor variables that were chosen to be tested during
the subsequent calibration of the station choice models. It explains the range of data sources
that were utilised, and how the variables were obtained from them. The chapter begins by
describing the implementation of a bespoke multi-modal route planner, identified in the
project objectives as a key requirement to enable a realistic representation of the station
access and train leg components of the reported and available alternative trips (Section
5.2). An automated framework that was developed to enable the predictor variables to be
efficiently generated from disparate open transport data sources is then outlined in Section
5.3, followed by a detailed explanation of how each predictor variable was derived (Section

5.4). The chapter then closes by drawing some key conclusions.

5.2 Implementing a multi-modal route planner

As the access journey is such an important factor influencing station choice, a key objective
of this research was to generate a realistic representation of these journeys, for the station
chosen by each survey respondent and the alternative stations available to them, taking into
account the actual access mode used. In addition, the station choice models suitable for
incorporating into flow demand models would need to include predictor variables able to
describe the characteristics of the available train legs, such as on-train time, waiting time
and the number of transfers. These requirements necessitated a trip planning tool that was

able to generate routes for a range of motorised and non-motorised transport modes.
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5.2.1 Identifying a suitable routing tool

A review of commercial and open source tools was conducted, and three potential solu-
tions were identified: Google Maps API, Visography TRACC and OpenTripPlanner (OTP)
(OpenTripPlanner, 2018).

5.2.1.1 Google Maps API

Although Google Maps is able to route using the UK public transport timetables for rail, coach
and bus, access to the API is heavily restricted, both by limitations on the number of API calls
from an IP address (typically 2,500 calls per day) and by restrictive usage conditions'. A
further limitation is that it is based on current published timetables. It would not be possible
to load historic timetable data to match the date that the on-train passenger surveys were
carried out, nor to add new public transport routes, adjust service frequencies or add station
stops. The ability to alter the current network would be necessary if the station choice models
were used to forecast demand for a new station or the effect of substantial service changes,

as the predictor variables would need to be generated based on this new situation.

5.2.1.2 Visography TRACC

Visography TRACC is commercial software developed by Basemap Ltd that is popular among
transport planners in consultancies and local government. The key advantage of Visography
TRACC is that it can import standard UK public transport data formats: TransXChange,
Association of Train Operating Companies (ATOC) common interface file, and NaPTAN. A
key disadvantage is that the user is limited to the analysis tools provided in the software.
The primary focus of TRACC is accessibility analysis, generating total travel time or distance
between a set of OD pairs. The software can produce a ‘Full OD-Path File’ that contains more
detailed information about each journey, such as walk time and interchange time, but the
help pages warn that ‘it would be best doing so with a small set of origin points [and] only the
first 50 origin points will have a path report’ (Basemap Ltd, 2014). Furthermore, given that
the UK public transport data is freely available under various open data initiatives, a solution
that is not reliant on commercial software was considered preferable. Open transport data
is of little practical benefit to a researcher who does not have access to suitable tools with

which to analyse it.

For example, Google prominently displays the following warning in the Google Distance Matrix API developer
information: ‘use of the Distance Matrix API must relate to the display of information on a Google Map; for
example, to determine OD pairs that fall within a specific driving time from one another, before requesting and
displaying those destinations on a map. Use of the service in an application that doesn’t display a Google map is
prohibited.” (Google, 2015).
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5.2.1.3 OpenTripPlanner

OTP is an open-source and cross-platform multi-modal route planner written in JAVA that uses
imported OpenStreetMap (OSM) data for routing on the street and path network and supports
multi-agency public transport routing through imported General Transit Feed Specification
(GTFS) data. It can also apply a digital elevation model to the OSM street network, allowing,
for example, cycle-friendly routes to be requested. OTP has a web front-end that can be used
as a trip planner by end-users and a sophisticated RESTful API. This was considered the most
promising platform, as scripts could be written in R to query the API and process the returned
data. In addition, this work could be extended in the future to develop a comprehensive OTP
API wrapper as an R package, which would benefit the wider research community.

5.2.2 Building the multi-modal network

OTP has a high random access memory (RAM) requirement when building the trip planner
graph? from the large datasets involved in this study. The graph build stage was therefore
carried out on a Microsoft Azure Linux Cloud Server with 56 GB of RAM?, and the graph
was then transferred to a local server with 16 GB RAM for normal operation of the trip
planner. For testing purposes, an initial graph was built using current OSM data for Great
Britain obtained from Geofabrik (Geofabrik, 2015) and GTFS data for GB National Rail
services which had been converted from the ATOC common interface format (GB Rail, 2015).
Although this initial work resulted in a fully-functioning trip planner suitable for walk, cycle

and rail modes, a couple of deficiencies were identified:

* The release version of OTP assumes that OSM roads tagged with ‘highway=trunk’
can only be traversed by cars. While in some countries walking and cycling are not
permitted on trunk roads, in the UK there is no real distinction between trunk and
primary roads other than the body responsible for them. To correct this anomaly the

source code was amended to give traversal permission to all modes on trunk roads.

* After testing recommended drive routes based on local knowledge it was apparent that
OTP was suggesting unlikely routes via narrow unclassified roads. The UK OSM tagging
guidelines indicate that roads tagged as ‘tertiary’ are considered to be busy unclassified
roads wide enough to allow two cars to pass safely (OpenStreetMap, 2015). However,
the release version of OTP has the average speed for tertiary roads set the same as
unclassified and residential roads, at 25 mph. The source code was amended to increase
the average speed of tertiary roads to 35 mph. Other adjustments included raising the
average speed of secondary roads from 35 mph to 40 mph, and adjusting the speed

2The trip planner graph specifies every location in the region covered and how to travel between them. It is
compiled from the OSM and GTFS data.

31t is only necessary to build a new graph when the underlying public transit data or OSM street network
requires updating. Graph build is therefore likely to be an irregular occurrence.
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of primary roads and motorways to 47 mph and 67 mph (from 45 mph and 65 mph)
respectively, based on published free-flow road speeds (Department for Transport,

2015). These changes resulted in more realistic driving routes.
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FIGURE 5.1: The OTP web interface, with example walk, bus and train trip itinerary.

The next stage in the test implementation of OTP was to incorporate public transit (bus)
timetable data for Wales, obtained from the Traveline National Dataset (TNDS). This dataset
is only available in the TransXChange format, a UK standard consisting of an XML schema
for the exchange of bus routes and timetables. Attempts were made to locate a reliable
tool to convert from TransXChange to GTFS format. The open source TransXChange2GTFS
Converter (GoogleTransitDataFeed, 2016) was investigated but was found to abort when
processing the vast majority of XML files in the TNDS, despite the files passing validation
in the official TransXChange Publisher tool available from the Department for Transport.
The converter has not been updated since 2012, probably as a result of GTFS becoming
the de-facto standard for publishing public transport data around the world, with the UK
now a notable exception, and it was rejected as a plausible solution. The only available
alternative was Visography TRACC, which is able to import TransXChange files and export a
public transport network to a GTFS feed. After completing this conversion, a number of error
checking, correction and clean-up processes were performed on the GTFS feed before it was
used for an OTP graph build, either to prevent fatal build errors or to improve performance.
Figure 5.1 shows the OTP web interface once the transit data had been incorporated, with

an example trip itinerary in the Rhymney Valley (Wales) using walk, bus, and train modes.
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5.3 An automated framework to derive model variables

It was recognised early on that deriving the predictor variables for the station choice models
would involve the collation of a large amount of data from a range of disparate open transport
data sources, and that a set of automated processes would be needed to handle this in an
efficient, reliable and accurate manner. In a discrete choice model variables must be derived
for every alternative in the choice set, thus increasing the number of observations in the model
by at least an order of magnitude. A data processing framework was therefore developed
that could automatically populate database tables with attributes obtained from internal and
external data sources. The framework consists of a PostgreSQL database, the R software
environment, an internal OTP route planner, and various external data sources. A generic
version of the framework is described in Young (2016), and the components and how they
interact are illustrated in Figure 5.2. Further information about the framework’s components,

in the specific context of this research project, are given in the sections that follow.

o/ Client-QGIS
” Visualisation
PostgreSQL/PostGIS
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Read/write database < OpenTripPlanner
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FIGURE 5.2: Framework to derive explanatory variables from disparate open transport data
sources.

5.3.1 PostgreSQL database

The PostgreSQL database, spatially-enabled using PostGIS, is used to store data and perform
spatial and non-spatial queries. Tables were grouped into three schemas, one for each dataset



116 Chapter 5 Station choice predictor variables

and one for supporting data. The key tables for the ‘latis’ and ‘data’ schemas and their

relationships, are shown in Figure 5.3 and described below:

* data.stations — this table contains information about every station in GB, with
the station CRS code as the primary key. The table was initially populated from the
NaPTAN database, and additional columns were added to store information related to

station services and facilities.

* latis.survey_val — This table contains the validated revealed preference survey
data (as described in Chapter 4). Each row in this table corresponds to an individual
survey response, with columns corresponding to the survey questions. Additional
columns specific to each survey response were added to this table.

* latis.nearest_30_stations — This table holds the 30 nearest stations to each
unique origin (originlatlong) in latis.survey_val, calculated using the eu-
clidean distance. For each origin the table has 30 rows, each a potential alternative
station. This table was used to rank the stations, for example by road distance, and to
generate a choice set for each survey response. The process used to populate this table
and create the choice sets is described in Chapter 6.

latis.survey_val data.stations
PK | id PK | crscode H—
FK | origincrs longitude
FK | destcrs latitude
. staffinglevel
originlationg
cctv
destlationg
daily_frequenc
date v-freq Y
starttime
latis.nearest_30_stations
accessmode
PK |id
egressmode
origin_geom FK | crscode >—
dest_geom originlationg
azimuth_origin_dest origin_geom

car_dist_km_from_origin
rank_car_dist_km_from_origin

azimuth_origin_station

FIGURE 5.3: Key tables in the PostgreSQL database schema, showing primary and foreign

keys and example columns.

5.3.2 R software environment

The R software environment is the hub of the framework. A set of functions were developed
to query the OTP API and process the JSON response. These include a connect function
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(otpConnect), a trip distance function (otpTripDistance), a trip time function (otpTripTime),
and a function that returns an isochrone map in GeoJSON format (otpIsochrone). These
functions form the beginnings of an API wrapper for OTP which could be released as an R
package in the future. The R code for the set of functions can be found in Appendix A (R

code segment A.1.) An example otpTripTime query and response is shown in Listing 5.1.

> otpTripTime(otpcon, from = '50.79877,-3.18689',to = '50.62158,-3.41228",
modes = 'rail,walk’', date = '06-01-2015", time = '7:30pm"', detail = TRUE)
$errorld

[1] IIOKII

$itineraries
start end duration walkTime transitTime waitingTime transfers
120:12:12 22:07:01 114.82 8.78 49 57.03 1

N Oy AW N =

LISTING 5.1: Example of an otpTripTime query to the OTP API and the parsed response

R is able to read from and write to the database by sending queries using the RPostgreSQL
package (Conway et al., 2016). The steps used in a typical R script to populate a database table,
for example the road distance between the trip origin and each alternative station (car_-
dist_km_from_originin latis.nearest_30_stations), are illustrated in Figure 5.4.
Data were also pulled from multiple database tables to populate the choice model datasets
with the alternatives for each observation and associated predictor variables. The choice
model datasets were stored as R data frames, and once complete were exported as CSV files

in the format required by the choice modelling software.

5.3.3 External data sources

Data from external web services can be accommodated in the framework through appropriate
API wrappers or feed parsers. Example feeds that were incorporated include the BR Fares
website (BR Fares Ltd, 2016), and the National Rail Enquiries (NRE) Knowledgebase XML
feeds (National Rail Enquiries, 2016). Further details are provided in Section 5.4.

5.3.4 Benefits of the framework

Developing and adopting the processing framework provided significant benefits to the
research project. These extended beyond its initial use to generate the predictor variables, to
enhance all aspects of the project. Key benefits included:

* It was efficient and reduced the opportunity for errors to arise, as the source data only
had to be stored and maintained in a single location (a database table).

 All data processing and analysis was carried out using R scripts, providing an extremely
detailed record of every step that was completed.
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FIGURE 5.4: The steps in a typical R script to populate the choice model dataset using data
from OTP.

* The approach gave a level of reproducibility that would not otherwise have been
possible, which proved invaluable during the research process. For example, it enabled
the choice model datasets to be readily regenerated based on different approaches or
assumptions and with new or modified variables.

* It provided hugely enhanced analytical capabilities, both spatial and non-spatial. Some
examples include: using SQL window functions to perform a calculation on grouped
records, such as ranking alternatives by distance for each origin; calculating the dif-
ference in bearing variable described in Section 5.4.1 using the PostGIS ST_Azimuth
function; and using SQL Procedural Language to calculate the accessibility term (see
Section 7.5.3.1).

5.4 Deriving the predictor variables

Having established the processing framework, the next stage was to generate the predictor
variables that were to be tested during calibration of the station choice models. Detailed

information on how the variables were obtained is given in the sections that follow. Where
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non-default values were used for OTP API parameters in the query request, these are identified
and justified®.

5.4.1 Access journey

Various measures of the access journey were obtained by querying the OTP API. These
included the distance in km using drive mode, and the access time in minutes by the reported
access mode. In a very small number of cases OTP reported that the trip was not possible by
car. This was due to the nearest road to the origin postcode centroid not being available for
car use, such as a pedestrianised street. In these cases the start point was manually adjusted
in the OTP web interface until a valid route was returned, and the new coordinates for that

origin were stored in a lookup table.

To generate journey data for access by bus (and also the Glasgow subway) the Scottish and
Welsh components of the TNDS generated on 9 June 2015 were incorporated into OTP. As
archived versions of TNDS are not publicly available, all bus and subway journeys were
assumed to take place in the week beginning 8 June 2015. To take account of varying
service levels throughout the week, the actual day of week of travel was calculated for each
observation in the dataset, and this was matched to the same day in the week beginning
8 June 2015. The desired time to arrive at the origin station was set to the recorded train

time®, and the following three trip planner parameters were set to non-default values:

* The maxWalkDistance was set to 1,600 m (default: unlimited), notionally allowing
800m (half a mile, or approximately a ten-minute walk) at both ends of the bus trip.
This is a soft limit. If no solution is available that respects this limit, the route planner

will increase it.

* The walkReluctance parameter, which is a multiplier that indicates the extent to
which sitting on a bus is preferred over walking, was increased from the default value
(2) to 5. This was based on experience requesting itineraries using the web interface,
and ensured a more realistic balance between the walk and bus components of the trip.
If set too low, the amount of walking may be excessive for someone who has chosen
to travel by bus; and if set too high the planner will try to limit walking to the bare
minimum, introducing unnecessary transfers and associated waiting time to avoid even

a modest walk to/from the boarding or alighting bus stop.

e The minTransferTime was set to 600 seconds (10 minutes). This is the minimum

time the planner will allow for a transfer between bus services.

“The full API documentation for OTP is available at: http://dev.opentripplanner.org/apidoc/
SFor the WG dataset the scheduled station departure time is recorded, whilst for the LATIS dataset the start
time of the particular service is recorded.
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Two additional variables related to the access journey were generated. First, a ‘nearest
station’ dummy variable which indicates whether or not a station in an individual’s choice set
is the closest station (this was determined based on both drive distance and mode-specific
access time). Second, a ‘bearing difference’ variable, which gives the difference in bearing
of origin:origin station and origin:destination in degrees (see Figure 5.5). This will identify
whether passengers prefer to choose a departure station that is broadly in the same direction as
their final destination. It was calculated using the PostGIS ST_Azimuth function (The PostGIS
Development Group, 2018), which gives the angle measured in degrees referenced from the
vertical (North) of point A to point B. This was calculated for origin:origin station (for all
stations in an observation’s choice set) and origin:destination (for the observation’s reported
trip). The absolute difference between the two azimuth angles was then calculated for each

station in the choice set, using the equation: 180 — abs(abs(azimuth,; — azimuth,4) — 180).
Origin

Pappee——

©

Lo

Origin Station

Q Destination

FIGURE 5.5: Difference in bearing (degrees) origin:origin station and origin:destination.

5.4.2 Station facilities and service frequency

Information on a range of potential facilities available at railway stations was obtained
from the NRE Stations XML feed, which forms part of the NRE Knowledgebase. This was
downloaded for every station in the UK and then parsed in R, primarily making use of the
xpathSApply () function from the XML package (Lang & the CRAN Team, 2017). The
variables recorded were: free car park (y/n), car park spaces (number), station CCTV (y/n),
ticket machine (y/n), waiting room (y/n), station buffet (y/n), toilets (y/n), cycle spaces
(number), cycle storage (y/n), cycle shelter (y/n), cycle CCTV (y/n), bus interchange (y/n),
taxi rank (y/n), car hire (y/n), cycle hire (y/n), metro services (y/n), and staffing level
(unstaffed, part-time, full-time). The script used to parse the feed is provided in Appendix A
(R code segment A.2).
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To generate service frequencies the GTFS feed for GB rail services dated 23 November 2013°
was downloaded from the TransitFeeds archive (TransitFeeds, 2017) and converted into a
PostgreSQL database, with each component CSV file becoming a separate database table. A
SQL query was then used to count the number of daily services scheduled at each station
on Monday 25 November 2013 (see PostgreSQL segment B.2 in Appendix B). All trains
calling at the station were counted, even if passengers could alight only. This was considered
appropriate, as terminal stations would otherwise appear to be served by fewer trains than

intermediate stations on the same line.

5.4.3 Train journey

Two GTFS feeds for GB rail services dated 17 March 2014 and 4 April 2015 were downloaded
from the TransitFeeds archive and incorporated into separate OTP graphs to cover the survey
period for both the WG and LATIS datasets. In addition, to allow London transfers, a GTFS
feed containing London Underground and Docklands Light Railway services was created
from downloaded Transport for London Journey Planner timetables’. These timetables were
provided in TransXChange format and were converted to GTFS, with bus and river services
excluded, using Visography TRACC.

A single train journey itinerary from origin station to the observed destination station for
the date of each trip was obtained by querying the OTP API. Walk mode was also per-
mitted, primarily to enable an alternative destination station, for example on a different
line, to be selected by the planner, with a walk to the observed destination station.® The
minTransferTime parameter was set to 320 seconds (6 minutes), corresponding to the
typical suggested connection time for a medium interchange station. The desired trip start
time was set to the recorded train time.” The variables retrieved for testing in the choice
models were the journey duration and its separate components: on-train time and waiting

time.

Fare data was obtained using the independent BR Fares web service API (BR Fares Ltd, 2016).
An API lookup was made for each unique origin:destination station pair in the choice model
datasets. This returned all possibles fares between the two stations, in JSON format. Adult

5This was an oversight. In early modelling the GTFS feed dated 25 April 2015 had been used, which better
corresponded to the date the surveys were carried out. However, only trains where passengers could board were
counted, causing terminal stations to appear to have fewer trains than intermediate stations on the same line. As
the frequency figure for all trains had already been calculated for the 23 November 2013 GTFS feed, this was
inadvertently used. As it is unlikely that any major changes in station service frequencies occurred between these
two dates, the impact is considered to be minimal.

7 Available from: https://api-portal.tfl.gov.uk/docs

8Initially it was planned to request routes from each origin station to the ultimate destination. However, this
is problematic as in some cases the egress mode is by car or coach with the final destination a considerable
distance from the observed destination station, and the route planner will suggest a much longer rail journey to
a station that is nearer the ultimate destination.

See Footnote 5
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walk-up fares were then selected, and from this subset the cheapest anytime return fare'°
and the cheapest off-peak return fare!! were extracted. The fare variable was then populated
dependent on the recorded train time, with the anytime return fare used for train times
before 9 a.m., and the off-peak fare used for train times after 9 a.m. The code used to parse
the API JSON response is included in Appendix A (R code segment A.3).

5.4.4 Land use and built environment

To investigate the effect of land use on station choice, a land-use mix measure was generated
using the Ordnance Survey Points of Interest (POI) dataset, obtained from the EDINA Digimap
service. As it was not possible to obtain the POI dataset for the entirety of the survey regions,
due to a maximum area restriction, the POIs within an 800 m? buffer of each station were
downloaded and merged into a database table. The number of points of interest for each of
the nine top-level classifications'? within a Euclidean distance of 400 m (about a five-minute
walk) of each station were then summed using a spatial query. The Herfindahl-Hirschman
Index (HHI) was then calculated for each station. The HHI indicates the extent to which one
land use type dominates in an area, and is calculated by squaring the percentage market

share of each classification, and then summing the squares:

K
HHI =) (P, x 100)? (5.1)

i=1
where P; is the proportion of land-use type i, and K is the number of land-use types (in this
case the nine top-level classifications) (Song & Rodriguez, n.d.). With nine classifications the
index can range from 1,111.11, where each land use type is equally represented in the area,

to 10,000 where only a single land use type is present.

5.4.5 Socio-economic variables

In discrete choice models each attribute must vary across the alternatives in a choice set.
While this is usually the case for attributes of the alternatives, attributes that relate to the
decision maker, such as socio-demographic variables, will be the same for each alternative.
There are two methods that allow socio-demographic variables to be used in choice models.
In the first, the variable is interacted (in some justifiable way) with an attribute that does
vary across alternatives, for example a cost variable could be divided by income. The second,

which can only be used if each alternative has a separate utility function, requires one of

101f available, the anytime day return fare was used (ticket type code: SDR), otherwise the lowest fare with
code SOR, GOR or GTR was selected

HIf available the cheap day return fare was used (ticket type code: CDR), otherwise the lowest fare with code
SVR, BFR, G2R or SMG was selected.

12The nine top-level classifications are: accommodation, eating and drinking; commercial services; attractions;
sport and entertainment; education and health; public infrastructure; manufacturing and production; retail; and
transport.
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the parameters to be normalised to zero by excluding it from one of the utility functions.
For example, if the choice was between travelling by bus or car, income could be excluded
from the car utility function. The estimated parameter would then be interpreted as the
effect of income on utility of bus compared to car (see Train (2009, pp. 21-23) for a more
detailed discussion). An alternative solution would be to calibrate entirely separate models
for particular socio-demographic segments, such as different age groups or levels of car

ownership.

The LATIS and WG surveys did include some supplementary socio-demographic questions, for
example sex, age (WG only), and household car ownership (LATIS) or car availability (WG).
However, as the station choice models would only define a single utility function (representing
the utility of choosing a station), the variables would either have to be interacted with an
attribute of the alternatives, or separate segmented models would need to be estimated.
Another potential issue was that any variables included in the choice models would need to
be available at the same spatial resolution when the aggregate models were calibrated or
applied. However, the socio-demographic UK census data is generally not available at the unit
postcode level, which was the zonal spatial resolution chosen for this research. Furthermore,
even if a variable such as level of car ownership was available at postcode level, it would still
represent an average for the postcode and introduce the problem of ecological fallacy. Given
the absence of a justifiable interaction variable, a desire to maximise the information available
to the station choice models by avoiding segmentation, and concerns about subsequent model
application, it was decided to only include attributes of the alternatives in the station choice
models.

5.5 Conclusions

This chapter has described how a range of potential station choice predictor variables have
been derived in a reproducible manner from a variety of data sources, supported by a
processing framework built around open source tools and accompanying code. The overriding
approach has been to obtain variables that better represent the information that would have
been available to each survey respondent. The OTP trip planner, and set of R functions written
to query the API and parse the response, has enabled mode-specific station access journeys
and several components of the train leg to be generated. These have been enhanced further
by using the transit timetables that were in operation when the passenger surveys took place,
and by matching to the appropriate day of week and trip time. Further code development
has enabled station facility and fare information to be obtained directly from API services;
and importing the rail timetable data into an SQL database has facilitated powerful relational
queries, such as calculating daily station frequency. The OTP API functions have the potential
to be developed further into an R package. This could be of enormous benefit to researchers

across disciplines, enabling them to query their own bespoke trip planner.
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The station choice predictor variables, along with the observed station choice data that was
described in the previous chapter, can now be brought together to calibrate models that can
predict station choice. The development of these models is the subject of the next chapter.



Chapter 6

Station choice models

6.1 Introduction

This chapter is concerned with the development of station choice models that have the
potential to be incorporated into aggregate rail demand models. It begins by explaining
which model forms were chosen and why (Section 6.2). The process of defining the choice
sets is then outlined, and descriptive statistics for the two datasets are presented and discussed
(Section 6.3). The calibration of MNL models (Section 6.4) and random parameter (mixed)
logit (RPL) models (Section 6.5) is then described; followed by an appraisal of the models,
considering their predictive performance and transferability (Section 6.6.1). The development
of a station choice model specifically intended to be incorporated into a national-scale trip
end model is then described (Section 6.7), before the chapter closes by summarising the

outcomes of the model development process and drawing some conclusions (Section 6.8).

6.2 Choosing the model form

It was decided to initially develop a range of MNL models, as this model form has been widely
used to model station choice in prior work, and it made sense to begin model development
with this relatively simple closed-form model. The calibration of the MNL models is described
in Section 6.4. The other commonly adopted approach in previous research has been to model
combined access mode and station choice using NL, with access mode at the upper level
and station choice at the lower level. However, there are several theoretical and practical
issues with this approach, some of which were identified in Chapter 3. The main issues are
summarised below:

* The NL model is intended to address the ITIA problem and the proportional substitution

behaviour that follows from it. It is far from clear how placing the same stations
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into each access mode nest can be theoretically justified!. Crucially, this nesting
structure fails to address unobserved spatial correlation (alternative nesting structures

are considered in Section 6.2.1 below).

* As the same alternatives are not allowed to be in multiple nests, it is necessary to pair
each alternative with an access mode (e.g. station1_car, station]_transit, stationl walk,

stationl_cycle), creating a much larger choice set.

* The NL model requires a universal choice set to be specified. In the case of the LATIS
dataset with 328 unique stations, the universal choice set with four access modes would
potentially contain 1,312 alternatives, exceeding the maximum of 500 allowed by the
NLOGIT 5 software package that was chosen for this project (Econometric Software
Inc, 2012). A universal choice set is also inappropriate for a study of station choice,

where the choices available to individuals will depend upon their location.

* While the passenger surveys asked some questions that would be particularly important
to include in the utility function for access mode choice, for example car ownership
and/or availability, such data would not be available at the necessary spatial resolution

when the station choice models were applied.

In view of these issues, it was decided not to pursue this model form. As MNL is unable to
account for individual taste variation, it was decided to examine whether the MNL models
could be improved upon by using the random parameter specification of the ML model, an
open-form model that requires the probabilities to be calculated using simulation techniques.
The calibration of these RPL models is described in Section 6.5.

6.2.1 Addressing spatial correlation

A weakness of almost all previous station choice research studies, is their failure to address
the issue of spatial correlation between alternatives. This is a particular issue for models that
will be used to predict demand for new stations, as it impacts their ability to represent realistic
patterns of passenger abstraction from existing stations. In an MNL model, introducing a
new station will reduce the probability of all existing stations in the choice set by the same
percentage, when in reality it would be expected to exert a greater influence on stations
closer to it. Several possible methods to address the issue were identified in Section 3.3.3,
including: nested logit; generalized nested logit; specially formulated spatial choice models;
and the introduction of an accessibility term. The potential of these four approaches was
considered in the context of this project, and the findings are summarised in the sections
that follow.

This is a view shared by Professor William Greene, Professor of Economics at New York University Stern School
of Business and developer of NLOGIT, who cast doubt on the validity of this approach (personal communication,
7 October, 2015).
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6.2.1.1 Nested logit

The NL model has the potential to address the problem of proportional substitution, but only
if appropriate groupings of stations can be defined. Although the IIA property is relaxed
between nests, so that the ratio of probabilities of two alternatives in different nests can
vary, IIA still holds for each nest and proportional substitution will occur. It is therefore
necessary to define groups of stations where this would be appropriate, and a mechanism
for objectively achieving this using a clustering algorithm was considered. The Partitioning
Around Medoids (PAM) algorithm was chosen, which is available as part of the ‘cluster’ R
Package (Maechler et al., 2017). This was preferred over K-means (which uses Euclidean
distances), as the cluster centres (medoids) are data points and a dissimilarity matrix can
be supplied (Mirkes, 2011). In this case the dissimilarity matrix was defined as the road
distance between each station pair. This was created for the WG dataset, by obtaining the
walk distance between each unique pair of stations in the dataset from OTP. As NLOGIT 5
allows a maximum of 25 nests to be specified, this was set as the number of required clusters.
Once the clusters had been generated, coordinate data for the stations was attached and
the clusters were plotted in QGIS. A selection of the clusters are shown in Figure 6.1, with
the stations in each cluster identified by colour and cluster number. It is apparent that the
clusters are large, in several cases larger than the anticipated individual choice set size of 10
stations (e.g. cluster 14), and the stations within them are widely spread geographically (e.g.
cluster 21). Even when the number of clusters was increased to 60, as shown in Figure 6.2,
large clusters of geographically spread stations remain. In addition, some stations are nearer
to a station in another cluster than they are to stations within their own cluster, for example
where cluster 59 meets cluster 27. Based on this analysis it was decided not to pursue NL
as a method of addressing spatial correlation. As well as the clusters containing too many
geographically dispersed stations to be useful for capturing spatial competition effects, there
would be a more general problem with the transferability of such models.

6.2.1.2 Cross-nested logit

The potential to use CNL to address spatial correlation between stations was considered with
particular reference to the approach adopted by Lythgoe et al. (2004), which was discussed
in Section 3.3.3.1. This approach allowed for a natural grouping of stations within a nest
structure, as shown in Figure 3.7, where the composite utility of travelling by rail from an
origin station zone to a destination station via any of the (up to 15) competing stations is at
the upper level. In the case of the models to be calibrated for this thesis there is no upper
level above the individual station choice by which to group the alternatives. Therefore, to
adopt a similar approach to Lythgoe et al. would imply each station in the universal choice
set being paired with each alternative?. For the LATIS dataset with 328 unique stations it

would be necessary to define 107,256 nests in the model. This is unlikely to be feasible,

2Note that order is important, as in the model nest [ ,‘(] is distinct from nest [If]
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FIGURE 6.1: Stations in the WG dataset clustered using the PAM algorithm — 25 clusters
(not all shown).

FIGURE 6.2: Stations in the WG dataset clustered using the PAM algorithm — 60 clusters
(not all shown).
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both in terms of defining the model (for example NLOGIT5 allows a maximum of 25 nests)
and model calibration. In addition, it has already been noted that a universal choice set
would not be appropriate for station choice, as each decision maker will clearly only consider
a very limited subset of these stations. This issue could be overcome by considering each
individual’s choice set to be the upper level grouping, with the cross-nesting of station pairs
only occurring within each choice set. However, for the LATIS model with 9,367 choice sets
and assuming 10 stations in each (producing 90 nests), an infeasible total of 843,030 nests

would need to be specified.

A potential solution to this enormous escalation in the number of nests would be to rank the
stations by distance from the trip origin for each choice set, with the choice becoming a station
of a particular rank, rather than a specific station. In this way the number of alternatives in
the model could be reduced to just 10, with 90 cross-nested station pairs. However, a major
issue with this approach is that a single set of allocation and dissimilarity parameters could
not adequately represent the degree of variability in unobserved independence or correlation
between pairs of stations of specific rank. For example, if a trip origin is in an area of high
station density then the expected pattern of allocation would be very different from that in
an area of very low station density. This is illustrated in Figure 6.3, where the hypothetical
allocation of the nearest station (R1) to four other stations is shown. In choice set A the
stations are close together and R1 is apportioned equally to the nests of the other stations.
In choice set B the stations are geographically more disperse, and a much larger proportion
of R1 is allocated to R2’s nest than to the nests of the other stations. It might be possible to
address this issue by part calculating the allocation parameter prior to model estimation. This
was the approach adopted by Lythgoe et al., where a logit probability was used to calculate
the allocations based on the road distance between station pairs (see Equation 3.19), with
a parameter 6 to be estimated (effectively a spread parameter). However, the ability to
part calculate allocation and/or dissimilarity parameters was not available in the NLOGIT5
software selected for this research. It was also noted that Lythgoe et al. were unable to
estimate 6 but instead tested the model with ‘the parameter set to different values’.

An additional consideration in the selection of a model for the station choice element of
this research was the practicability of incorporating it into a trip end model that was to be
calibrated for all of GB at a high zonal spatial resolution. This integration would require
calculating choice probabilities for some 1.5 million postcodes, and a model form that imposed
substantial additional overhead on that calculation, for example by evaluating it over at
least 90 nests per postcode, is very unlikely to be practicable, either for calibration or the

subsequent application of the model to generate demand forecasts for new stations.

In view of the range of issues associated with implementing CNL discussed above, it was
decided not to pursue this model form and consideration turned to models specifically
developed to address spatial correlation. These are discussed in the next two sections, but
it is useful to note at this point that the work of Sener et al. (2011) and Weiss and Habib
(2016) (referred to in Section 6.2.1.3) was carried out many years after development of the
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FIGURE 6.3: Example choice sets (A and B) where stations are ranked by distance from the
trip origin (r1 — r5), showing hypothetical allocation of the first ranked station to each nest
containing stations ranked 2 — 4.

CNL and GNL models. This suggests that the latter models may not be the most appropriate

solution for addressing the issue of spatial choice in models of this type (i.e. flat MNL choice

form with no obvious upper level nesting).

6.2.1.3 Spatial choice models

Two models that address spatial correlation and appear promising in the context of station
choice were identified in Chapter 3 (Section 3.3.3). These were the GSCL model proposed by
Sener et al. (2011); and the SWEC model proposed by Weiss and Habib (2016). Unfortunately,
the functionality to run these models is not present in proprietary or open-source software

packages. It would therefore be necessary to define the likelihood function programmatically;

for example using the GAUSS matrix programming language, which would require advanced

knowledge of econometrics. Attempts were made to contact Ipek Sener, with the view to
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obtaining the code to run the GSCL model, but no response was forthcoming. In view of

these obstacles, the decision was made not to pursue these models further.

6.2.1.4 Introducing an accessibility term

The fourth option identified in Chapter 3 to deal with spatial correlation, is introducing
an accessibility term into the MNL model. To assess the potential of this approach, it was

decided to test the following form of the accessibility term, as used in Fotheringham’s CDM:

0

An = ﬁZ% , 6.1

KTk
K]
where M is the total number of stations in the choice set for individual n at origin i, W is a
weight, d is the distance from station j to station k, and 6 is a parameter to be estimated. As
Aincreases a station is closer to more ‘attractive’ stations. The weight was defined as the
total number of station entries and exits in 2014/15, and the expectation was for 6 < 0,
indicating that a station has a lower utility, and is therefore less likely to be chosen, the
nearer it is on average to more heavily used stations. Fotheringham states that the CDM can
be derived, and under certain circumstances be consistent with random utility theory, simply
by including the accessibility term in the utility function (Fotheringham, 1986), and that was
the approach adopted, with the suggested logarithmic transformation of the term added to

the models.

6.3 Choice set definition

Having decided on the model forms to be developed, and how the issue of spatial correlation
was to be examined, the next step was to define the choice sets for each observation in the
datasets. It is infeasible that someone choosing an origin departure station would consider
the entire universal choice set of some 2,500 stations in GB. This issue of defining the
individual choice set for spatial decisions where the universal choice set is often very large
is well-recognised. For example, in a review of choice set formation in destination choice
models, Thill (1992) argues:

On the other hand, the set of possible alternatives is typically large for spatial
decisions, so that it can hardly be argued that the individual is able to evaluate it
all. More realistically, the individual considers only a portion of the universal set.
(p. 364)
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Erroneously defining the choice set as the universal set could result in significant model
mis-specification, as the choice model will assign positive probabilities to all alternatives, irre-
spective of whether they are in the individual’s true choice set, potentially resulting in biased
parameters and/or prediction errors (Pagliara & Timmermans, 2009; Thill, 1992). A method
was therefore required to reduce the universal choice set to a realistic and feasible set of
alternatives for each individual. As discussed in Section 3.4.3, there are two main approaches
to this choice set generation process, either deterministic or probabilistic (stochastic). In
the deterministic approach the choice sets are defined exogenously by the researcher based
on some constraint(s). This approach has been criticised for relying on assumptions made
by the researcher on the basis of arbitrary criteria and therefore involving uncertainty (for
example, see Cantillo and Orttizar (2005) and Zolfaghari, Sivakumar, and Polak (2013)). The
stochastic approach is usually based around the two stage model first suggested by Manski

(as cited in Pagliara and Timmermans (2009)), which takes the following form:

P =>Pi(d|C)-PI(C|G), (6.2)
ceG

where Pé is the probability that individual i chooses alternative d; P{(d | C) is the probability
that individual i chooses d given choice set C; and P!(C | G) is the probability (to be modelled)
that the choice set of individual i is C; and G is a set of all non-empty subsets of the universal
choice set M. A major problem with this general form is that the sum is across every possible
combination of alternatives. The number of choice sets increases exponentially with the
number of alternatives (G = 2™ — 1) and the model is only practicable when the number of
alternatives is small (perhaps 6 or less). It would be virtually impossible to apply this type
of model with 2,500 alternatives in the universal choice set. In order to create a tractable
model many variations to the choice set generation stage have been proposed that impose
constraints to restrict the choice sets and sets of choice sets (Horni, Charypar, & Axhausen,
2010). A comprehensive review of these models is provided by Pagliara and Timmermans
(2009). They can be difficult and complex to estimate, and most cannot be estimated using
standard software. Furthermore, like the deterministic approach, these rely on exogenous

information for the choice set formation, as noted by Pagliara and Timmermans (2009):

Even though the inclusion of latent stochastic thresholds and the simultaneous es-
timation of thresholds and utility functions represents an important step forward
in discrete choice analysis, forecasting results still depend on the researchers’
specification of the choice set. What seems lacking is a convincing process model
that probably needs to be developed with a particular type of spatial choice
behavior in mind. (p. 193)

An important objective of this research project, as outlined in Chapter 1, was to use the
station choice model to define probabilistic station catchments at a high spatial resolution
for incorporation into a trip end model. This would require defining a choice set for some



Chapter 6 Station choice models 133

1.5 million GB postcodes. With this in mind a pragmatic approach was needed to define the
individual choice sets. A highly complex stochastic method, untested in the field of station
choice modelling and not based on a robust process model for station choice behaviour
(which does not exist), was not thought to be practicable or appropriate. The methods used
to define the choice sets in prior station choice research, which were reviewed in Section
3.4.3, were all based on a deterministic approach, with the nearest n stations to the trip
origin the method most commonly adopted. It was therefore decided to adopt a similar
approach in this study. This was considered preferable to using a distance- or time-based
threshold which would produce widely varying choice set sizes depending on station density.
For example, a 60-minute drive time threshold applied to a postcode origin in the Greater
London area could produce an infeasibly large choice set, potentially containing hundreds
of stations; while in a rural area the same threshold may contain only one or two stations,
potentially excluding stations that were evaluated by travellers in reality. The nearest n
method is intuitively more attractive as it implies that an individual’s geographical area of
consideration will be smaller when there is a high density of stations and larger when station
density is low. This is consistent with conceptual models of spatial choice behaviour where
consumers develop a ‘spatial information field’ or ‘mental map’ of the available facilities to
satiate their demands (for example, see Hanson (1977); Potter (1979); Smith (1976)). In
areas with low station density, the spatial information field may need to be wider to include
more distant stations to meet the traveller’s needs. The decision on the value of n was based
on findings from an initial pilot study using a smaller survey dataset (Young & Blainey, 2016).
This analysis found that the nearest 10 stations accounted for 99% of observed choice, and

this was chosen as the criteria for generating the choice sets.

Both Thill (1992) and Pagliara and Timmermans (2009) make the observation that the con-
sequences of a mis-specified choice set are only theoretical and the impact can be minimised
by a well-specified model. If an alternative that was not evaluated is included in a choice set
but is assigned a very low probability, close to zero, then the impact might be very small. The
example given by Thill (1992) is a store located a long distance from the decision maker and
with no characteristics that make it more attractive than other closer stores. As this store
is unlikely to be chosen then its inclusion in the choice set ‘is of no consequence either for
predicted choice probabilities or for parameter estimates’. A similar point is made by Bierlaire,
Hurtubia, and Flotterod (2010), who observe that ‘the more an alternative is dominated, the
less important it is to know if it really belongs to the choice set’. In the context of station
choice there are situations where you might expect one station to be dominant, for example
the choice set for a postcode next to a major station with superior service levels and facilities;
or a postcode in a market town located close to the only station and where the other stations
in the choice set are in neighbouring towns on the same line and with similar services and
facilities. In situations like this the dominant station was found to have an extremely high
probability, as shown in the example in Table 6.1. This gave confidence that the model was

well specified and that any bias would be minimised.
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Station Probability

Swansea 0.9993002895
Port Talbot Parkway 0.0002015849
Gowerton 0.0001988341
Neath 0.0001913671
Llansamlet 0.0000871365
Skewen 0.0000138374
Baglan 0.0000030092
Briton Ferry 0.0000029273
Pontarddulais 0.0000005616
Bynea 0.0000004525

TABLE 6.1: Predicted station choice probabilities for postcode SA1 5DZ, located close to
Swansea railway station.

To generate the choice sets for the WG and LATIS datasets, a database table was first populated
with the nearest 30 stations to each unique origin, based on Euclidean distance using the
efficient PostGIS indexed nearest neighbour query (Ramsey, 2011). Any new stations that
were not open during the relevant survey periods were excluded from the universal set of
available stations. For each origin:station pair the drive distance was obtained using an API
call to OTP and the 30 stations were then ranked by drive distance for each origin using a
window function, enabling the nearest ten to be identified. These choice sets were found to
account for 92% and 95% of observed choice in the LATIS and WG datasets respectively.

It was noted in Section 4.6.2 that a small but not insignificant proportion of survey respondents
chose a station that was outside of their nearest ten, and even including the nearest 30 stations
did not account for all observed choice. One likely explanation is that passengers sometimes
choose to board at a major city-centre station, and reject many small- or medium-sized
stations that are closer to their trip origin. It was therefore decided to try and improve the
choice sets by ensuring the nearest major station to each origin was included. Although a strict
criteria was not applied to select these ‘major’ stations, the starting point was those stations
in Scotland or Wales with more than 50,000 annual interchanges. Suburban stations were
excluded, and several stations in England that might realistically be chosen from origins in
Wales and Scotland were added. The final list of stations identified as ‘major’ were: Aberdeen,
Aberystwyth, Bridgend, Bangor (Gwynedd), Carlisle, Cardiff Central, Cardiff Queen Street,
Carmarthen, Chester, Dundee, Edinburgh, Glasgow Central, Glasgow Queen Street, Hereford,
Haymarket, Inverness, Llandudno Junction, Newcastle, Newport (S Wales), Perth, Shrewsbury,
Stirling, Swansea, and Wrexham General. In the case of Glasgow, Edinburgh and Cardiff, the
two main stations in these cities were included in the choice set if either of them was the
nearest major station to the origin. By including the nearest major station in the choice sets,
the proportion of observed choice accounted for increased to 97% in both datasets.
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If an alternative station was also the destination station of an observed trip, then it was
removed from the choice set, as this would clearly not be a valid option. In addition, if
Glasgow Central or Glasgow Queen Street was the observed destination, then both of these
stations were removed from the choice set if present. Using either of these stations to get
to the other would be illogical. This is not the case for Cardiff or Edinburgh where travel
between the two main stations by rail would be a logical trip. Any observation where the
chosen station was not present in the choice set was, by necessity, removed prior to model

calibration.

6.3.1 Threshold-based adjustments

A feature of logit models is that an alternative can never have a probability of zero, and if an
alternative has no realistic prospect of being chosen it can be excluded from the choice set
(Train, 2009). For example, if an individual has chosen to walk to a station, then a cut-off
distance could be defined, after which a station is no longer considered a feasible alternative;
and if travelling to a station by bus, then the choice set could be restricted to those stations
that can realistically be accessed by bus from the individual’s trip origin. However, refining
the choice sets in this manner assumes that each individual only considered a single access
mode, the one that they used to access their chosen station. As this is unlikely to be a valid
assumption in many cases, applying adjustments of this nature may not be appropriate unless
choice of access mode is simultaneously modelled. However, in the case of access by bus,
it was considered reasonable to assume that a car was not available for the station access
journey. Therefore, where access to the chosen station was by bus (or Glasgow subway)
alternatives were only retained in the choice set if a route by that mode was available, or if

the trip planner suggested walking to the station instead.

During data validation any trips where the respondent said they walked to the station were
removed from the datasets if the access journey would have taken over 60 minutes (see
Section 4.5.1.1). However, the choice sets for the retained observations where access mode
was walk were not restricted to stations within 60 minutes of the origin. This is for the
reasons outlined above; it is possible that someone who chose to walk to a reasonably close
station also considered driving to a more distant one. Furthermore, restricting the choice set
to stations within a 60-minute walk of the trip origin would have resulted in some choice
sets containing only a single alternative, and the affected observations could not have been
included in the model calibration.

As it was intended to estimate some models using mode-specific access time parameters, the
small number of observations where access mode was recorded as ‘other’ were removed prior
to model calibration®. This ensured that identical choice sets could be used for all model

calibrations, allowing models to be compared using measures of model fit (log likelihood,

3These were largely unspecified or modes for which the trip planner could not be used to generate the access
time variable, for example ‘boat’ and ‘ferry’.



136 Chapter 6 Station choice models

adjusted rho-squared and AIC). A summary of the choice set composition for the two datasets
is provided in Table 6.2.

Dataset No. of choice situations No. of cases Average choice set size

WG 5680 59833 10.53
LATIS 9367 97838 10.44

TABLE 6.2: Summary of choice sets prepared for model calibration.

6.3.2 Descriptive statistics

Summary statistics for most of the model variables are provided for the two datasets in Tables
6.3 and 6.4%. The statistics are summarised for all the alternatives (cases) present within the
dataset, and also for the chosen alternative in each choice set only. The mean of the boolean
variables indicates the proportion of survey observations or cases where that variable was
true. As parameters for the two car parking variables were only estimated against those
observations that accessed the station by car (see Section 6.4.1.2), the summary statistics
for these variables only relate to those observations. As there were only a few observations
where bicycle or taxi was used to access the chosen station, no variables that specifically

related to these modes (for example, cycle parking) were included in the models.

Correlation matrices for the two datasets, prepared using the R package ‘corrplot’ (Wei &
Simko, 2017), are shown in Figures 6.4 and 6.5. The upper triangular matrix represents the
Pearson correlation coefficient for each pair of variables using a shaded circle, where the area
of the circle and the depth of shading is proportional to the size of the correlation coefficient.
Purple shading indicates a positive correlation, and brown shading a negative correlation.
The lower triangular matrix shows the actual correlation coefficient in percentage format
(for reasons of clarity). Where the correlation coefficient is not significant at the 95% level,
neither a circle nor coefficient is shown. The variables are ordered using the first principal

component method.

The highest positive correlations occur between the station service, facility and staffing-level
variables, with this effect more pronounced in the WG dataset. For example, there is a strong
correlation between full-time staffing level and service frequency (WG: 0.88; LATIS: 0.83),
and a moderate correlation between service frequency and the number of car parking spaces
(WG: 0.68; LATIS: 0.53). In the WG dataset a station with a toilet is very likely to also have
a waiting room (0.90), although interestingly there is a small negative correlation (—0.09)
between these two variables in the LATIS dataset. The presence of correlations between
these variables is to be expected, as they are all influenced by the ‘size’ of the station. Larger

stations that serve more passengers will have a greater service frequency, and they are more

“*For reasons of brevity the various measures of the access journey that were tested in the models, other than
access distance by road, are not included in the summary statistics tables or correlation matrices.
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All cases Observed choice only

Variable Mean Std.Dev. Minimum Maximum Number Mean Std.Dev. Minimum Maximum Number

of cases of cases
Nearest 0.096 0 1 97838 0.638 0 1 9367
Car distance (km) 11.238 14.00 0.01 212.83 97838 3.634 7.36 0.02 200.55 9367
Full-time staff 0.100 0 1 97838 0.385 0 1 9367
Part-time staff 0.405 0 1 97838 0.486 0 1 9367
Unstaffed 0.495 0 1 97838 0.129 0 1 9367
Daily service frequency 195.521 272.288 2 1263 97838 422.105  391.72 6 1263 9367
CCTV 0.961 0 1 97838 0.998 0 1 9367
Ticket machine 0.590 0 1 97838 0.846 0 1 9367
Toilets 0.361 0 1 97838 0.793 0 1 9367
Waiting room 0.974 0 1 97838 0.951 0 1 9367
Bus interchange 0.993 0 1 97838 0.997 0 1 9367
Taxi-rank 0.997 0 1 97838 0.996 0 1 9367
HHI 2087.750 559.06 1278.35 10000.00 97838 2012.480 396.42 1362.85 5200.00 9367
Ln(wact) 12.428 1.79 3.41 15.95 97838 12.249 1.88 6.93 15.38 9367
Train leg duration (mins) 63.142 69.21 1 1304 97838 45.526 49.23 3 1187 9367
Waiting time (mins) 10.836 27.03 0 604 97838 0.918 7.97 0 463 9367
On-train time (mins) 51.462 51.31 1 1003 97838 44.396 45.88 1 737 9367
Bearing difference (deg) 80.529 57.08 0 180 97838 77.238 52.02 0 180 9367
Fare (£) 14.763 21.60 0.90 437.00 97838 14.040 20.96 1.50 432.00 9367
Parking spaces (car mode)  108.304 162.77 0 940 26480 228.338  225.62 0 940 2515
Free car park (car mode) 0.010 0 1 26480 0.004 0 1 2515

TABLE 6.4: Summary statistics for choice model variables — LATIS dataset.
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FIGURE 6.4: Correlation matrix for model variables — WG dataset.

likely to be staffed on a full-time basis, to provide better facilities for passengers, and to have
larger car parks. Conversely, the strongest negative correlations are seen between a station
being unstaffed and these service and facility measures, for example toilets (WG: —0.70;
LATIS: —0.73) and service frequency (WG: —0.61; LATIS: —0.46).

The other notable positive correlation is between fare and on-train time (WG: 0.75; LATIS:
0.90). This is not surprising, given that rail ticket pricing in the UK is generally dependent
upon the distance travelled for walk-up fares. It should be noted that on-train time and
wait-time are both components of the train duration variable, so a strong positive correlation
between these variables would be expected.

6.4 Model calibration — multinomial logit models

A series of MNL models were calibrated separately for the WG and LATIS datasets using
NLOGIT 5. During the calibration of the models, the predictor variables were entered using
a manual forward selection procedure, and variables were retained or rejected based on
several factors, including the statistical significance of the estimated parameter, whether the

sign of the parameter matched that intuitively expected, and the contribution of the variable
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FIGURE 6.5: Correlation matrix for model variables — LATIS dataset.

to model performance. The performance of the models was assessed using log-likelihood,
McFadden’s adjusted pseudo R? (tho-squared), and the AIC, which is considered a more
appropriate in-sample measure to compare the predictive accuracy of models (see Section
7.6 for a fuller discussion). The initial log-likelihood (i.e. the NULL model used to calculate
the adjusted rho-squared) assumes that there is an equal probability of each alternative in a
choice set being chosen. Choice models suitable for use in trip end rail demand models were
distinguished from those suitable for flow models, with the latter additionally incorporating
variables relating to the train leg and destination.

Although the alternatives comprising the choice sets are named and identifiable, as far
as the model construct is concerned the approach adopted is equivalent to an unlabelled
choice experiment. As the calibrated models are intended to be used for predictive purposes,
when entirely different alternatives will be under consideration, the parameter estimates
are considered to be generic and not specific to a particular alternative, and therefore ASCs
are immaterial and have not been estimated. This approach differs, for example, from that
of Blainey and Evens (2011) where the alternatives were identified by their distance rank
within the choice set, and ASCs were estimated for each rank. An additive linear utility
function was specified for all the models (see Equation 3.2). In some models non-linear
transformations of predictor variable were entered, and some variables were interacted with
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dummy variables so that parameters were only estimated on a subset of the choice situations.
These cases are described when the relevant model is discussed in the sections that follow.
In addition to measures of model fit, the calibration result tables include a measure of model
predictive performance, called the ‘predictive performance difference’. This is the absolute
difference between actual and predicted choice for each station summed across the model
and expressed as a percentage of the total number of choice situations, with a lower value
therefore indicating a better performing model. The measure is discussed at greater length
in Section 6.6.1.

6.4.1 Trip end variant models

6.4.1.1 Station access variables

The initial set of models that were calibrated (models TE1 through to TE12) incorporated
variables related to accessing the station. The results for these models are shown in Tables
6.5 and 6.6 for the WG and LATIS datasets respectively.

In the first model (TE1), the nearest station (by drive distance) dummy variable was added.
As would be expected, given that in 60-70% of the choice situations the nearest station was
chosen, this model was a considerable improvement over the null model for both datasets.
The WG model performed rather better than the LATIS model, presumably reflecting the
larger proportion of choice situations where the nearest station was chosen (70.5% vs. 63.8%).
In model TE2 an alternative measure of the nearest station was tested, based on drive time

rather than distance. For both datasets, this was an inferior model.

The next stage of calibration concentrated on identifying which measures of the access
journey produced the best performing model, with both distance and time-based variables
tested. In addition to estimating a single parameter for each variable, which represents only
an average effect on utility, mode-specific parameters were estimated by interacting dummy
variables for each access mode, or for motorised and non-motorised modes, with the time or
distance measure. The models that used time-based measures were found to consistently

out-perform those based on distance measures.

The best model for both the WG and LATIS datasets, with an adjusted rho-squared of 0.58
and 0.51 respectively, incorporated mode-specific parameters for access time (model TE12).

This was the only model where access journey times were retrieved from OTP for the actual



WG-TE1 WG-TE2

WG-TE3

WG-TE9

WG-TE11

WG-TE12

Variable B Z Sig B Z Sig

B

B b4 Sig

B b4 Sig

B

Sig
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Nearest by distance 3.127 107.2 ***

Nearest by time 2.861 102.9 *x*
Distance

Distance (motorised)
Distance (non-motorised)
Distance (walk)

Distance (cycle)

Distance (bus)

Distance (car)

Time

Time (motorised)

Time (non-motorised)
Time (walk)

Time (cycle)

Time (bus)

Time (car)

Sample size (# trips) 5680 5680
Initial log-likelihood? -13355 -13355
Final log-likelihood -7215 -8194
McFadden’s adjusted R 0.46 0.39
AIC 14433 16391
Predictive perf. diff. (%) 64.0 76.0

1.814 40.6

-0.277 -28.2

5680
-13355
-6550
0.51
13104
59.9

*
*

1.761 39.5 ***

-0.169 -30.2 ***

5680
-13355
-6548
0.51
13100
60.7

1.256 28.0 ***

-0.084 -21.5 ***
-0.099 -30.7 ***

5680
-13355
-5722
0.57
11450
56.8

1.063 23.2 ***

-0.106 -31.7

-0.140

-0.047 -13.0
-0.136 -23.3

5680
-13355
-5627
0.58
11264
56.5

*kk

wkk

142

3Initial log-likelihood assumes there is an equal probability of each alternative in a choice set being chosen.

wik wx % indicate significance at 1%, 5%, 10% level.

TABLE 6.5: Results of station choice MNL models — WG trip end variants (1 of 3).
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mode used by the survey respondents®. The utility function for model TE12 is as follows:

4
Viie = BN+ D ¥ n(Dmodey, X Tyn), (6.3)

m=1
where N is a dummy variable with value 1 if alternative k is the nearest station, and zero
otherwise; f is the parameter for nearest station; Dmode,, is a dummy variable with value 1
if individual n uses access mode m, and zero otherwise; Ty, is access time from origin i to

alternative k using mode m; and v,, is the access time parameter for mode m.

The estimated parameters suggest that access time is a slightly greater cost to car drivers
than to pedestrians, but a substantially lower cost to bus passengers. For example, using the
WG model, a 30-minute access journey would reduce the utility of a station by 4.1 units for
a car driver, but by only 1.4 units for a bus passenger. There are likely to be more critical
considerations than access time for someone reliant on getting a bus to a station, such as
which station(s) is(are) served and the bus schedule, and to an extent the travel time has
to be accepted. In contrast the car driver has greater control and flexibility, including the

option not to travel by train at all.

6.4.1.2 Service and facility variables

The next set of models (TE16 through to TE28) used model TE12 as the starting point, and
introduced variables related to station service levels and facilities. The results for these
models are shown in Tables 6.7 and 6.9, for the WG dataset, and Tables 6.8 and 6.10 for the
LATIS dataset.

The station staffing level dummy variables (part-time and full-time) were added first (model
TE16), and these need to be interpreted with reference to the excluded unstaffed level. The
utility of a station was found to be higher for staffed stations than unstaffed stations, and the
models were substantially improved, particularly on the predictive performance measure.
It is not clear how important actual staffing level is in the decision-making process, as it
could be an indicator of a range of other station facilities, and full-time staffing level is highly
correlated with daily service frequency (WG: 0.88; LATIS: 0.83). In model TE17 staffing
level was replaced with daily service frequency, but it was a far inferior model, indicating

that staffing level is capturing additional information.

There are a few stations in both datasets that have very high service frequencies relative
to the other stations, and this produces a right-skewed distribution with a long tail (see
Figure 6.6). By applying a log-normal transformation a distribution that is closer to the

normal distribution was obtained (see Figure 6.7). This transformed variable was tested in

SCar was specified as the available routing mode in the OTP API query when taxi or motorcycle was given as
the access mode; and where access was by bus, bus and walk were specified as the available modes. For the
LATIS dataset, subway was made available as an additional routing mode for any observation where either bus
or subway was the chosen access mode.
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FIGURE 6.6: Histogram of service fre- FIGURE 6.7: Histogram of log trans-
quency — unique stations in LATIS formed service frequency — unique sta-
dataset. tions in LATIS dataset.

model TE18, and found to perform substantially better than the untransformed version, with
adjusted rho-squared improving from 0.66 to 0.71 in the WG dataset, and from 0.61 to 0.67
in the LATIS dataset.

In model TE19, both staffing level and log-transformed daily frequency were included. For
the LATIS dataset this model performed better than either of the models where these two
variables were present alone, although the effect of the correlation between daily frequency
and full-time staffing can be seen in the lower parameter estimates for these variables. In the
case of the WG dataset, the full-time staffing variable was no longer significant, and in the
subsequent model, WG-TE20, the full-time and part-time variables were replaced with the
unstaffed dummy. The estimated parameter for this variable was significant and negative, as
would be intuitively expected, and the model was also an improvement over models TE16
and TE18.

In the subsequent models (WG-TE21 to WG-TE28; and LATIS-TE20 to LATIS-TE28) the station
facilities variables were introduced. Overall, these produced a relatively small improvement
in adjusted rho-squared, although there was a distinct improvement in the model predictive

performance measure, particularly for the WG dataset.

With respect to the WG dataset, the CCTV, car parking spaces, free car park, ticket machine,
toilets, bus interchange and taxi rank parameters were all positive and significant at the
99% level, and each resulted in a significant incremental increase in the log-likelihood
(p < 0.001)%. By introducing these variables the predictive performance measure was
reduced from 28.9% (model WG-TE20) to 20.9% (model WG-TE28), indicating a substantial
improvement. The variable for waiting room was only significant at the 5% level and caused

a slight reduction in predictive performance and was not retained in subsequent models.

For the LATIS dataset, the CCTV, car parking spaces, ticket machine and toilets parameters
were positive and significant at the 99% level, and each resulted in a significant incremental

increase in the log-likelihood (p < 0.001). The improvement in the predictive performance

SCalculated using the log likelihood ratio test, with one degree of freedom.
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WG-TE16 WG-TE17 WG-TE18 WG-TE19 WG-TE20 WG-TE21 WG-TE22 WG-TE23
Variable B Z Sig B Z Sig B Z Sig B Z Sig B Z Sig B 2 B Z Sig B 2
Nearest by distance 1.044 21.1 *** 1.007 19.1 *** 0.964 17.9 * 0.957 17.8 *** 0.946 17.5 0.902 16.7 *** 0.920 16.9
Time (walk) -0.137 -30.3 *** -0.140 -30.6 *** -0.140 -30.9 *** -0.135 -29.9 *** -0.141 -30.6 *** -0.140 -30.5 *** -0.134 -29.8 *** -0.134 -29.8 ***
Time (cycle) -0.140 -6.3 *** -0.152 -7.3 *** .0.161 -7.0 *** -0.160 -6.8 *** -0.156 -6.6 *** -0.163 -6.9 *** -0.156 -6.8 *** -0.156 -6.8 ***
Time (bus) -0.042 -11.0 *** -0.054 -14.4 *** -0.061 -15.6 *** -0.057 -14.7 *** -0.054 -13.9 *** -0.055 -13.9 *** -0.051 -13.1 -0.052 -13.3 ***
Time (car) -0.146 -24.7 *** -0.162 -28.6 *** -0.187 -30.5 *** -0.180 -27.9 *** -0.175 -28.0 *** -0.177 -27.8 *** -0.199 -28.7 *** -0.190 -27.0 ***
Fulltime staffing® 3.221 44.4 *** -0.005 0.0 ns
Part-time staffing?® 2.079 37.0 *** 0.967 14.3 ***
Unstaffed -1.128 -16.7 *** -1.038 -15.3 *** -1.110 -16.0 *** -1.070 -15.3 ***
Weekday service frequency 0.006 42.3 ***
Ln(service frequency) 1.982 46.4 *** 2.042 24.4 *** 1.455 28.4 *** 1.425 27.7 *** 1.199 22.5 1.251 22.7 ***
CCTV (yes) 0.976 7.1 *** 0.968 7.0 0.954 7.0 ***
Car parking spaces (no.) 0.005 13.5 *** 0.005 13.6 ***
Free car park (yes) 0.465 4.5 ***
Sample size (# trips) 5680 5680 5680 5680 5680 5680 5680 5680
Initial log-likelihood® -13355 -13355 -13355 -13355 -13355 -13355 -13355 -13355
Final log-likelihood -4068 -4585 -3899 -3713 -3757 -3727 -3628 -3618
McFadden’s adjusted R? 0.69 0.66 0.71 0.72 0.72 0.72 0.73 0.73
AIC 8150 9182 7811 7441 7528 7470 7274 7256
Predictive perf. diff. (%) 34.7 41.6 32.5 26.9 28.9 28.1 24.8 24.8

146

4Unstaffed removed from model as reference.
bInitial log-likelihood assumes there is an equal probability of each alternative in a choice set being chosen.

Jek ke ok

www ek indicate significance at 1%, 5%, 10% level.

TABLE 6.7: Results of station choice MNL models — WG trip end variants (2 of 3).
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measure was less pronounced than in the WG dataset, reducing from 25% (model LATIS-
TE19) to 22.4% (model LATIS-TE25). The free car park, waiting room, and bus interchange
variables were not significant (p > 0.05); while the taxi rank variable was only significant at
the 10% level, produced only a small increase in the log-likelihood and no improvement to
the predictive performance. These variables were not retained in subsequent models.

It is noticeable that although the staffing level parameters became less important once the
range of station facilities and service variables were added to the models, they did remain
statistically significant and fairly large. Moving from LATIS model TE16 to TE28, the full-time
parameter reduced from 4.4 to 1.9, and the part-time parameter from 1.9 to 0.7; while in the
WG models, the negative weighting applied to an unstaffed station reduced from 1.1 (TE20)
to 0.6 (TE28). These results suggest that while the service and facilities variables help to
explain choice behaviour that was previously being captured collectively by the staffing level
variables acting as a proxy, staffing level is an important factor in and of itself. However,
there is a potential endogeneity (simultaneity) problem at play. While it is likely that some
passengers do prefer stations which have higher staffing levels, stations which are more
frequently chosen due to factors not adequately captured by the model will have a better

business case to provide more staff.

The parameters for the car parking spaces and free car park variables were only estimated
against those choice situations where access mode was car, and this was achieved by inter-
acting these two variables with a dummy variable that took the value of 1 if access mode
was car, and 0 otherwise. The parameter appears very small for both datasets, but this only
represents the effect of a single extra parking space. For example, model WG-TE28 (where
the coefficient is 0.004), predicts that an extra 500 parking spaces would increase the utility

of a station by 2 units.

The presence of CCTV was found to have a strong and significant positive effect on station
utility, and when introduced to the models had relatively little impact on the other parameters.
This result is surprising as this variable has not been included in previous studies of station
choice. However, the main source of advice on passenger demand forecasting for the rail
industry in Britain, the PDFH (Association of Train Operating Companies, 2013), does
recommend a demand uplift when upgrading a station from no CCTV to CCTV of 8% for

business and leisure trips and 5% for commuter trips.

6.4.1.3 Land-use (HHI)

When the HHI variable was initially introduced, the models failed to converge. This was
resolved by dividing each value of HHI (which, as calculated, could range from 1,111.11
to 10,000), by 10,000. The measure entered into the reported models (model TE29 in
Tables 6.9 and 6.10) therefore ranged from 0.11 to 1. A range from close to zero to one

is a common alternative variant of the HHI index. In the WG model, HHI was significant
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LATIS-TE25 LATIS-TE26 LATIS-TE27 LATIS-TE28 LATIS-TE29 LATIS-TE31
Variable B Z Sig B Z Sig B Z Sig B Z B Z Sig B Z Sig
Nearest by distance 0.807 19.80 *** 0.808 19.81 *** 0.805 19.74 *** 0.807 19.79 0.800 19.64 *** 0.769 18.60 ***
Time (walk) -0.110 -34.90 *** -0.110 -34.88 *** -0.110 -34.90 *** -0.111 -34.90 -0.111 -34.95 ***  -0.111 -35.13 ***
Time (cycle) -0.095 -10.67 *** -0.095 -10.67 *** -0.095 -10.67 *** -0.095 -10.65 ***  -0.096 -10.75 *** -0.097 -10.88 ***
Time (bus/subway) -0.050 -17.46 *** -0.050 -17.39 *** -0.050 -17.45 *** -0.050 -17.44 *** -0.050 -17.48 *** -0.053 -17.70 ***
Time (car) -0.177 -39.53 ***  .0.177 -39.51 *** .0.177 -39.53 *** .0.177 -39.55 *** .0.178 -39.59 *** .0.183 -38.82 ***
Fulltime staffing? 1.931 18.68 *** 1.935 18.74 1911 18.31 1.944 18.75 1.976 18.94 2.117 19.18
Part-time staffing? 0.720 9.44 0.723  9.49 0.704 9.11 0.729  9.53 0.766  9.88 0.775 10.03
Ln(service frequency) 0.876 22.53 *** 0.877 22.55 *** 0.877 22.55 *** 0.872 22.36 *** 0.868 22.30 *** 0.823 20.35 ***
CCTV (yes) 1.922  4.45 *** 1.910 4.42 *** 1.882  4.35 *** 1.918 4.44 *¥* 1.996 4.60 *** 2.063 479 ***
Car parking spaces (no.) 0.001 6.84 *** 0.001 6.86 *** 0.001 6.81 *** 0.001 6.81 *** 0.001 6.68 *** 0.001 7.47 xE*
Ticket machine (yes) 0.687 10.40 *** 0.693 10.47 *** 0.674 10.11 *** 0.689 10.43 *** 0.687 10.37 *** 0.677 10.19 ***
Toilets (yes) 0.532 7.58 F** 0.523 7.39 xF* 0.556  7.70 *** 0.536  7.63 *** 0.533 7.58 F** 0.531 7.56 ***
Waiting room (yes) -0.167 -1.11 ns
Bus interchange (yes) 0.314 1.40 ns
Taxi rank (yes) 0.774 1.81 *
POI (HHI/10000) 1.456  3.41 ***
Ln(accessibility term) 0.160 4.94 ***
Sample size (# trips) 9367 9367 9367 9367 9367 9367
Initial log-likelihood® -21945 -21945 -21945 -21945 -21945 -21945
Final log-likelihood -6636 -6635 -6635 -6634 -6630 -6624
McFadden’s adjusted R2 0.70 0.70 0.70 0.70 0.70 0.70
AIC 13296 13297 13296 13295 13287 13273
Predictive perf. diff. (%) 22.4 22.4 22.3 22.4 22.2 21.6

4Unstaffed removed from model as reference.
PInitial log-likelihood assumes there is an equal probability of each alternative in a choice set being chosen.

F*kk ok

, ** * indicate significance at 1%, 5%, 10% level.

TABLE 6.10: Results of station choice MNL models — LATIS trip end variants (3 of 3).
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at the 1% level, and had a negative sign. This corresponds to the a priori expectation for
this variable, that passengers will gain greater utility from stations with a diverse mix of the
top-level POI classifications in their immediate vicinity, than from stations located within a
more homogeneous land-use environment. For example, passengers may prefer a station
where they can carry out a range of other activities prior to catching their train, such as
shopping, getting refreshments, or going to the bank. The coefficient appears quite large
(—5.162), and as the HHI of stations in the WG dataset ranges from 0.14 to 0.72, representing
an effect on utility of between —0.7 and —3.71 units, has the potential to substantially impact
relative station utility. However, the variable had a minimal impact on the model, which had
a slightly higher log-likelihood than the prior model, but was marginally worse in terms of
predictive performance. In the case of the LATIS model, although the parameter was also
significant at the 1% level, it had a positive sign, suggesting that stations would have a higher
utility as land-use mix becomes less diverse. As a behavioural explanation for this result is
difficult to justify, the HHI variable was removed from subsequent LATIS models.

6.4.1.4 Accessibility term

The process of deriving the accessibility term proved unexpectedly computationally intensive’,

and involved the following main steps:

* Every possible combination of two stations present within the choice sets was identified.
* The walk distance between each unique station pair was obtained from OTP.

* The accessibility term was then calculated for each station in each choice set. This
required a series of processes for every row in the dataset:
1. identify the current station (alternative) for the current row.
identify which choice set the current station belongs to.
identify the other stations in this choice set.
retrieve the distance to each of the other stations from the current station.

retrieve the entries/exits for each of the other stations

AN I

calculate the accessibility term.

The calculated accessibility term was introduced in the final trip end variant model (TE31). In
the WG model the parameter was significant at the 1% level and was negative. As explained
in Section 6.2.1.3, when the accessibility term increases, a station is on average nearer to

more attractive alternatives within a specific choice set, and a negative parameter therefore

"To the extent that scripting this procedure in R proved impractical when the station choice models were run
for every postcode in GB during calibration of national trip end models, and SQL procedural code was written
instead (see Section 7.5.3.1 for details).
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suggests the presence of a competition effect. As the accessibility term ranges between 5.18
and 14.11 in the WG dataset, the estimated parameter (—.282) has the potential to reduce
station utility by between —1.46 and —3.98 units. However, the maximum difference in
the accessibility term of stations within any given choice set is lower, at 3.71, indicating
a maximum utility difference of —1.05 units. The choice set for the observation with the
maximum difference is mapped in Figure 6.8. It can be seen that Swansea (SWA) has by
far the lowest weighted accessibility term (—1.88), reflecting the fact that the other stations
within the choice set have substantially fewer annual trips (the attraction variable used to
weight the accessibility term). Llansamlet station (LAS) has the highest weighted accessibility
term (—2.93), reflecting its proximity to Swansea; and the weighted term then gradually
reduces to —2.53 at Llandeilo (LLO) as the influence of Swansea diminishes. In this example,

the chosen station was Swansea.

In the LATIS model, the accessibility term parameter is positive (0.160), which suggests
an agglomeration effect, where stations are more likely to be chosen if they are nearer to
other (more attractive) stations. The purpose of this variable was to attempt to address
the proportional substitution behaviour of MNL models, so that when the model is used in
a planning capacity it can allow a new station to have a greater influence (i.e. to abstract
proportionally more passengers) from closer stations than more distant ones. A positive
parameter would have the opposite effect, so would not be a useful mechanism to address
this issue. In the case of both the WG and LATIS datasets the accessibility term improved the
model, despite the difference in parameter sign, with a small (but statistically significant)

reduction in log-likelihood, and a small improvement in the predictive performance measure.

The inconsistency in the sign of the accessibility term parameter between the two datasets is
clearly problematic and does not give confidence that this is an appropriate mechanism for
capturing spatial competition effects and modifying the proportional substitution behaviour
of the MNL model. However, the decision to append the nearest major station to each choice
set (in order to increase the proportion of observed choice accounted for) will have created
artificial spatial relationships between stations that may have undermined the CDM. This
issue is discussed further in Section 6.7 when the definition of choice sets for calibration of a
combined dataset model is considered.

6.4.1.5 Summary of best performing models

The most suitable models for incorporating into trip end rail demand models, calibrated
using the two datasets, are WG-TE31 and LATIS-TE25 which have an adjusted rho-squared
of 0.74 and 0.70 respectively, and a predictive performance measure of 20.5% and 22.4%

respectively. The utility function (V) for model WG-TE31, for individual n at origin i choosing



153

Chapter 6 Station choice models

(282°0—) 1€HL [Ppow woiy 11owered

paleWInISa 3 SuIsn uLR) pay3iom oYyl pue ‘UOIIEIS YIBS 10J ULID) AJTIQISS90R oI SUIMOUS 19SeIRp DA Ul UONIBAISS]O S[SUIS B 10] 19 910D (89 AUNDI

9TZ = (5000,) ST/pT SdiL
= paiybiam 899 = o%‘;)v:_ VM

- = Bra ! = (Pem)u =
T = PaIubiom “6€°0T = (Pem)ul iSYT 000 51 eT ST
NN., = qum M Nwm = ouméc_ ‘A

\
ST/pT sduL
Ezm_w; '8'6 =

S e

£5'6 = (Pem)u] : U_Eﬁ:
; L ENGE R AN
= @ooo_v ST/4T sduL
§9'C-= paybIoMm am 6 = (Pem)ul u_z

(s000.) ST/t1 aE
= uﬁr_m_w\s ‘€6 = oum;v:_ I

;‘ ‘
= (s000.) ST/4T sduL i
8G°C- = PaybIgM bT°'6 = (IPem)u) 1y -
T = (S000,) ST/T sdUL
= Ezm_m; '86'8 = (Pem)u| T

NE o L N N




154 Chapter 6 Station choice models

station k, is as follows:

4
Voik = BN+ Z Ym(Dmode,, x Ty,,) + 06U + € InF; + {Cy + n(Dcar x Ps;)
=1 (6.4)

+ 0(Dcar x Pf) 4+ 1Tmy + kBy + ATr; + uH, + vInA,

where Dmode,, is a dummy variable with value 1 if individual n uses access mode m, and
zero otherwise; Ty, is access time from origin i to alternative k using mode m; F is the daily
service frequency; Dcar is a dummy variable with value 1 if individual n accessed the station
by car; Ps is the number of car parking spaces; H is the HHI, A is the accessibility term; N, U,
C, Pf, Tm, B, and Tr are dummy variables that take the value of 1 if station k is the nearest
station (by distance), unstaffed, has CCTV, has a free car park, has a ticket machine, has a
bus interchange, or has a taxi-rank respectively, and zero otherwise; and 3, v, 6, €, ¢, m, 6, t,
K, A, u and v are parameters to be estimated. The utility function (V) for model LATIS-TE25,

for individual n at origin i choosing station k, takes the following form:

4

Voe = BN+ D y(Dmodey, X Tyyn) + 5Ft + €Pt + { InFy, + 1Cy + 0(Dear x Psy.)
~ (6.5)

+1Tmy + xToy,

where Ft, Pt, and To are dummy variables that take the value of 1 if station k is full-time
staffed, part-time staffed, or has toilets, and zero otherwise.

6.4.2 Flow variant models

The starting point for calibrating the flow variant models are models WG-TE29 (in preference
to WG-TE31, as the accessibility term is introduced again at the end of flow variant calibration)
and LATIS-TE25. The results are shown in Tables 6.11 and 6.12.

6.4.2.1 Train leg variables

The duration of the train leg (in minutes) was introduced in model FM1, and produced
an improvement over the previous models, especially for the LATIS dataset where adjusted
rho-squared increased from 0.70 to 0.78 and there was a substantial uplift in predictive
performance (with the predictive performance difference measure reducing from 22.4%
to 14.5%). An effect of introducing the train leg variable was to increase the size of the
mode-specific access time parameters, which had been very consistent up to this point (since
introduction of the service frequency variable). The most notable change was for car mode,
where the parameter reduced from —0.190 to —0.229 in the WG model, and from —0.177
to —0.281 in the LATIS model. It may be that the prior models were unable to adequately

explain longer access journeys to a chosen station. If decisions to travel further by car to
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WG-FM1 WG-FM2 WG-FM3 WG-FM4 WG-FM5 WG-FM6
Variable B 4 Sig B 4 Sig B 4 Sig B 4 Sig B z Sig B 4 Sig
Nearest by distance 0.895 15.1 *** 0.896 15.1 *** 0.888 15.0 *** 0.891 14.9 **x 0.902 15.1 *** 0.896 15.1 ***
Time (walk) -0.141 -29.6 ***  -0.141 -29.6 *** -0.141 -29.4 ***  .0.140 -29.4 *** -0.142 -29.5 *** .0.142 -29.5 ***
Time (cycle) -0.170  -6.7 *** -0.170 -6.7 *** .0.170 -6.7 *** -0.169 -6.6 *** -0.167 -6.6 *** -0.167 -6.6 ***
Time (bus) -0.069 -14.7 ***  -0.069 -14.3 ***  -.0.069 -14.7 ***  .0.066 -13.9 *** -0.068 -14.7 *** -0.069 -14.9 =***
Time (car) -0.229 -28.7 *¥* -0.229 -27.6 -0.228 -28.7 *** -0.218 -25.3 *** -0.227 -28.5 *¥* -0.228 -28.7
Unstaffed -0.584 -7.2 *¥* -0.585 -7.2 ¥* -0.607 -7.4 *** -0.608 -7.4 *** -0.538 -6.6 *** -0.525 -6.5 ***
Ln(service frequency) 0.521 8.1 ¥ 0.524 0.503 . 0.511 7.8 Fx* 0.491 7.5 0.514 8.1 *¥*
CCTV (yes) 1.188 8.3 *¥* 1.187 8.3 x¥* 1.184 8.3 *x¥* 1.175 8.2 F¥* 1.212 8.5 ¥ 1.210 8.5 *¥*
Car parking spaces (no.) 0.004 9.1 *¥* 0.004 9.0 *** 0.004 9.1 x¥* 0.004 9.1 *** 0.004 9.1 x** 0.004 9.6 ***
Free car park (yes) 0.718 6.5 *** 0.715 6.5 *** 0.714 6.5 *** 0.713 6.4 *** 0.780 7.0 *x** 0.801 7.2 *¥x*
Ticket machine (yes) 0.870 8.2 *¥* 0.875 8.1 *** 0.894 8.4 *¥* 0.908 8.4 *** 0.837 7.8 ¥¥* 0.835 7.8 ***
Bus interchange (yes) 0.870 12.4 0.872 124 0.862 12.3 0.863 12.3 0.902 12.8 0.925 13.5
Taxi rank (yes) 0.279 4.0 0.276 3.9 *x* 0.260 3.7 *** 0.255 3.6 *** 0.122 1.6 ns
POI (HHI/10000) -5.877 5.5 *¥* -5.839 5.4 *¥* -5.751 -5.4 *¥* -5.680 -5.3 *** -5.257 4.9 ¥ -5.676  -5.4 ***
Train duration -0.063 -22.5 **x -0.065 -22.6 *** -0.065 -22.1 *** -0.063 -22.5 *** -0.063 -22.6 ***
On-train time -0.061 -14.0 ***
Wait-time -0.064 -16.2 ***
Bearing difference 0.002 3.7 ***
Bearing difference (0-5km access) 0.002 4.3 *x*
Bearing difference (5-10km access) 0.002 2.1 **
Bearing difference (10-15km access) 0.000 0.1 ns
Bearing difference (15-20km access) -0.008 -2.8 *x**
Bearing difference (20+ km access) -0.004 -1.2 ns
Ln(accessibility term) -0.29 4.4 ***  .0.332 -5.7 ***
Sample size (# trips) 5680 5680 5680 5680 5680 5680
Initial log-likelihood?® -13355 -13355 -13355 -13355 -13355 -13355
Final log-likelihood -3074 -3074 -3067 -3059 -3064 -3065
McFadden’s adjusted R? 0.77 0.77 0.77 0.77 0.77 0.77
AIC 6178 6181 6167 6157 6161 6161
Predictive perf. diff. (%) 19.4 19.4 19.4 19.4 19.0 19.0

Initial log-likelihood assumes there is an equal probability of each alternative in a choice set being chosen.

Fkok

, **, * indicate significance at 1%, 5%, 10% level

TABLE 6.12: Results of station choice MNL models — WG flow variants.
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board at a station with faster direct train services can now be accounted for by a smaller

train leg disutility, then the disutility associated with the access journey per se can increase.

In model FM2, the train leg was split into on-train time and wait-time (due to transfers). In
the LATIS model the wait-time parameter was 1.53 times larger than the on-train parameter,
which is reasonably consistent with the convention that wait time is valued at twice the rate
of in-vehicle time (Association of Train Operating Companies, 2013) (in subsequent models,
once the ‘bearing difference’ variable had been introduced the differential was greater, for
example wait-time was valued at 1.82 times on-train time in model LATIS-FM8). However,
this was not replicated in the WG model where wait-time was valued only marginally higher
than on-train time, and both parameters were very similar to the train duration parameter.
There is a potential problem with the datasets that may have impacted the estimation of train
leg parameters. The questionnaire used in both the WG and LATIS surveys asked respondents
for the boarding and alighting station of the train they were currently travelling on, rather
than their ultimate boarding and alighting station. To ensure that the ultimate origin and
destination stations were accurately identified it was therefore necessary to exclude any
observations where the respondent indicated that their access or egress mode was another
train. In theory this should mean that none of the retained observations involved a transfer
between trains. In reality, this is not the case, presumably because some respondents had
the entirety of their trip in mind rather than the current train. However, this does mean that
there are likely to be artificially fewer observations in the dataset where the train leg from
the chosen station involved a transfer between trains than would be the case in reality (and
the extent of this might differ between the two datasets).

The LATIS FM2 model, with the train leg split, performed somewhat worse than the FM1
model on all the measures, whilst there was no significant difference between the two WG
models. For subsequent WG models only the train leg duration was retained, while both

measures of the train leg were tested with additional variables in subsequent LATIS models.

The train fare variable was not included in the models due to a very high correlation with

other train leg variables, for example a 0.9 correlation with on-train time in the LATIS dataset.

6.4.2.2 Difference in bearing variable

The ‘difference in bearing’ variable, described in Section 5.4.1, was added next. In the LATIS
models (LATIS-FM3 and LATIS-FM4) this had the expected negative sign, indicating that a
station is less likely to be chosen as the difference in bearing from origin:origin station and
origin:destination increases, suggesting a preference for a station that is in the same direction
of travel as the ultimate destination. However, the variable did not have the expected sign in
the WG model (LATIS-FM3). It was hypothesised that this may become a more important
factor as the access journey distance increases, and might be of little consequence for short

access journeys. This was investigated in subsequent models by estimating five separate
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parameters for the variable based on banded access journey time. In the LATIS models
(LATIS-FM5 and LATIS-FM6) the parameters showed the expected effect, with a gradual
increase in the size of the negative parameter as access distance increases, and produced a
small improvement in model fit and predictive performance over the models without this
variable. The effect of a 45-degree difference in bearing ranged from —0.1 for access journeys
< 5km, to —0.6 for access journeys > 20km (using model LATIS-FM6). In the WG model
only the parameters for the two longer access bands had the expected negative sign, but only
the parameter for the 15-20km band was significant. It is possible that the geography of the
South Wales valleys has affected this variable in the WG dataset. Each of the valley rail lines,
which mostly radiate out from central Cardiff, are confined to their respective valley along
with the associated road network used for station access. As a consequence, stations in any
given choice set might be largely confined to the same valley, thus limiting the variability of

the bearing difference amongst alternatives.

6.4.2.3 Accessibility term

When the accessibility term was re-introduced to the WG model (WG-FM5), the dummy
variable for taxi-rank was no longer significant, and this was removed and the model re-run.
In model WG-FM6 the accessibility term has a negative sign and a similar parameter value to
that estimated in the trip end variant (—0.282 in WG-TE31, compared to —0.332 in WG-FM6).
Unlike the trip end variant models, the accessibility term also had a negative sign in the
LATIS models (LATIS-FM7 and LATIS-FMS8), and was significant at the 1% level. In both
datasets the models with the accessibility term performed slightly better, both in terms of

measures of fit and predictive performance, than those without.

6.4.2.4 Summary of best performing models

The most suitable models for incorporating into flow rail demand models, calibrated using the
two datasets, are WG-FM6 and LATIS-FM7 which have an adjusted rho-squared of 0.77 and
0.78 respectively, and a predictive performance measure of 19.0% and 14.2% respectively.
The utility function (V) for model WG-FMS6, for individual n at origin i choosing station k
and travelling to destination station j, is as follows:

4
Vit = BN+ Z Ym(Dmode,, x Ty,,) + 06U + elnFy + {C, + n(Dcar x Ps;)
m=1 (6.6)

+ 0(Dcar x Pfy) +1Tmy + kBy + AHy + uTl; + vInAy,

where Tly; is the duration of the train leg from origin station k to destination station j. The
utility function (V) for model LATIS-FM?7, for individual n at origin i choosing station k and
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travelling to destination station j takes the following form:

4
Voik = BN+ D y(Dmodey, X Tigyn) + 5Ft + €Pt + { InFy, + 1Cy + 6(Dear x Psy.)
= . (6.7)
+ 1 Tmy + kTop + AT+ Z uy(Dbearing;, x Bdif ;) + vInAy,
b=1
where Dbearing, is a dummy variable with value 1 if the access journey to alternative k falls
within distance band b, and zero otherwise; and Bdify; is the bearing difference between

origin i to alternative k and origin i and destination station j.

6.5 Model calibration — random parameter (mixed) logit
models

A potential weakness of the MNL model is that it does not allow for individual taste variation
in the estimated parameters. The random parameter specification of the mixed logit model
allows some or all of the parameters to vary by individual, from a distribution specified
by the researcher. However, the model is more complex than MNL and the calculation of
probabilities does not take a closed form. Instead the probabilities have to be simulated, and
model estimation takes significantly longer to complete. Utility is specified in the same way
as with the MNL model, except the vector of coefficients is now able to vary by individual,
and the probability of individual n choosing alternative i from a choice set of J alternatives
is an integral given by the following equation:

ﬂ/xni
e
Py = J - | f(B)dB, (6.8)
Z e[jlxnj
j=1
where 3/ is a vector of coefficients for variables x for individual n, and the coefficients vary
over the population with density f () (Train, 2009).

6.5.1 Trip end variant models

Initial RPL models were run, using the best performing trip end variant MNL models (WG-
TE31 and LATIS-TE25) as the starting point, with all parameters specified as random (apart
from the accessibility term and HHI®) to test whether the standard deviation (SD) of each

8The accessibility term is included to capture spatial correlation effects, and it was therefore considered
inappropriate to specify its parameter as random. Due to difficulties with the MNL models converging when
the HHI variable was included, it was decided to specify its parameter as non-random in the more complex
simulation models.
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parameter was significantly different from zero. If the SD is not significant, it indicates
that there is no individual taste variation for that parameter. As the parameter for all the
model variables was expected to have the same sign for all individuals, f () was specified as
log-normal, with those variables expected to have a negative sign entered as negative values.
Halton draws were used for the simulation, with 75 and 100 draws for the WG and LATIS
datasets respectively. The results of these initial models are shown in Table 6.13.

The SD of the nearest station and mode-specific access time parameters were significant at
the 1% level for both the WG and LATIS models, with the exception of cycle mode in the
WG model, where the SD was only significant at the 10% level. In addition, the SD of the
part-time staffing and car park spaces parameters was significant at the 1% level in the LATIS
model. With the exception of the taxi-rank parameter in the WG model, where the SD was
significant at the 5% level, the SD of the remaining parameters had low z-values in both
datasets, and were not close to critical values. Based on these findings an RPL model (model
RPL1) was run for both datasets, with the parameters that had significant SDs at the 1%
level specified as random. For both datasets, the SD of the nearest station parameter was
not significant in this first model, and neither was the SD of the part-time staffing parameter
in the LATIS model. An additional model was therefore run with these variables no longer
specified as random (model RPL2). In the LATIS RPL2 model, the SD of the car park spaces
parameter was no longer significant, and so a third model was run with this variable no
longer specified as random (RPL3). The results of the various models are shown in Tables
6.14 and 6.15. These also show the median, mean, and standard deviation of the random
parameters, calculated from the log-normal parameters using the formulae below, following
Train (2009, p. 150):

B = exp(m), (6.9a)
B = exp(m + (s2/2)), (6.9b)

std(B) = B x 4/ (exp(s2) — 1), (6.9¢)

where m is the mean of In(B) and s is the standard deviation of In(B).

Both the WG and LATIS models (RPL2 and RPL3 respectively) had higher log-likelihood
and adjusted rho-squared values than the equivalent MNL model, and although predictive
performance was slightly better for the WG model (20.2% vs. 20.5%), it was marginally worse
for the LATIS model (22.85% vs. 22.4%). The SD of the random parameters was significant,
indicating that the parameter estimates are individual-specific and for any individual the
parameter may be different from the mean parameter estimate (Hensher et al., 2016).
Interestingly, the variability in the parameter for walk access time was much greater in the
WG model (SD 0.18) than it was in the LATIS model (SD 0.06), while there was greater
variability in the parameter for car access time in the LATIS model (SD 0.31) compared with
the WG model (SD 0.15). The RPL model also had an effect on the non-random parameters,

when compared to the MNL model, most noticeably a substantially smaller parameter for
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the nearest station variable (0.63 vs. 0.94 in the WG model, and 0.37 vs. 0.81 in the LATIS
model). This presumably reflects the ability of the RPL models to better explain choice

decisions through the access journey variables as a result of individual-specific parameters.

6.5.2 Flow variant models

For the flow variant RPL models, the best performing flow variant MNL models were initially
selected as the starting point (WG-FM6 and LATIS-FMS8). The parameters specified as random
were the mode-specific access time parameters, as identified in the trip end variant RPL
models, and the parameters for the relevant train leg variables. The WG RPL model based on
WG-FMS6 failed to converge after 100 iterations, and a model using WG-FM1 as the starting
point was estimated instead. The results of the flow variant RPL models (RPL4) are shown
in Tables 6.14 and 6.16.

In the WG model, the SD of the three mode-specific parameters remained significant at the
1% level, and the SD of the parameter for train leg duration was also significant at the 1%
level. When compared to the MNL model (WG-FM1), there was a very small improvement
in the goodness of fit measures, and in the predictive performance measure (19.17% vs.
19.4%). In the LATIS model, the SD of the mode-specific access time parameters was no
longer significant, and neither was the SD of the on-train time and waiting-time parameters.
This model was virtually identical to the MNL equivalent, both in terms of the estimated

parameters and the goodness of fit and performance measures.

6.6 Model appraisal

6.6.1 Predictive performance

Rather than use the fundamentally flawed ‘percent correctly predicted’ measure (this applies
in all choice contexts, see Train (2009, p. 69) for a discussion), which assesses a model by
assuming each individual would choose the station with the highest predicted probability
and compares that to the station actually chosen, predictive performance was measured by
comparing the sum of predicted probabilities for each station with the number of times that
station was actually chosen (as preferred by Hensher et al. (2016, p. 502)). To assess the
overall performance of the models reported in this thesis, the absolute difference between the
two figures was summed for all stations and expressed as a percentage of the total number
of choice situations in the model. A ‘predictive performance difference’ of zero percent
would therefore indicate no deviation between observed and predicted choice. There is no
theoretical upper limit to the measure. The predictive performance of the best models, as
discussed in the previous sections, is summarised in Table 6.17. Given that the aim of this

research is to improve on the simplistic models that assume the nearest station is chosen,
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LATIS trip end variant (RPL1) (TE25 starting model)

LATIS trip end variant (RPL2) (TE25 starting model)

LATIS trip end variant (RPL3) (TE25 starting model)

Random parameters® Non-random Random parameters® Non-random Random parameters® Non-
parameters parameters random
parameters

variable Mean =z Sig Std. =z Sig Med. Mean Std. B z Sig  Mean z Sig Std.  z Sig Med. Mean Std. B z Sig  Mean =z Sig Std.  Sig Med. Mean Std. B z Sig

In(B) dev B B DevB In(B) dev B B Dev B In(B) dev B B DevB

In(B) In(B) In(B)

Nearest station (yes) -0.853 -2.4 **  0.414 0.43 0.46 0.20 0.413 8.8 *** 037 7.9 ***
Time - walk (mins) -1.940 -50.7 *** 0.413 0.14 0.16 0.07 -1.952 -56.0 *** 0.382 6.7 *** 0.14 0.15 0.06 -1.934 -55.7 *** 0.385 *** 0.14 0.16 0.06
Time - cycle (mins) -1.785 -11.5 *** 0901 4.5 *** 0.17 0.25 0.28 -2.110 -19.0 *** 0.496 4.8 *** 0.12 0.14 0.07 -2.111 -19.2 *** 0.490 *** 0.12 0.14 0.07
Time PT (mins) -2.773 -28.8 *** 1152 25.8 *** 0.06 0.12 0.20 -2.570 -40.7 *** 0.882 27.2 *** 0.08 0.11 0.12 -2.544 -46.6 *** 0.827 *** 0.08 0.11 0.11
Time (car) mins -1.308 -33.6 *** 0.781 19.7 *** 0.27 0.37 0.34 -1.360 -38.6 *** 0.771 21.8 *** 0.26 0.00 0.31 -1.326 -38.6 *** 0.760 *** 0.27 0.35 0.31
Ln(frequency) 0.914 19.7 *** 0.984 22.4 *** 0.96 22.0 ***
Full-time (yes)b 2414 17.4 2.061 16.2 *** 2.07 16.3 ***
Part-time (yes)b 0.055 0.5 ns 0.009 0.0 ns 1.06 1.06 0.01 0.817 8.1 *** 0.80 7.9 ***
CCTV (yes) 2.218 2.9 1.940 2.7 *** 1.94 2.7 ***
Car park spaces (#) -7.040 -26.3 *** 1368 5.4 *** 0.00 0.00 0.01 -6.783 -21.9 *** 0.119 0.1 ns 0.00 0.00 0.00 8.5 ***
Ticket machine (yes) 0.865 9.1 *** 0.841 9.2 *** 0.85 9.3 ***
Toilets 0.509 0.639 6.8 *** 0.65 7.0 ***
On train time (mins)
HHI
In(wact)
Sample size (# trips) 9366 9366 9366
Initial log-likelihood® -21945 -21945 -21945
Final log-likelihood -6636 -6410 -6410
McFadden’s adjusted R2  0.71 0.71 0.71
AIC 12847.10 12853.60 12851.90
Predictive perf. diff. (%) 22.54 22.70 22.85

2Log normal distributions specified and inverse of variables expected to have negative coefficients entered into model. ®Unstaffed removed from model as reference.
“Initial log-likelihood assumes there is an equal probability of each alternative in a choice set being chosen.

, **, * indicate significance at 1%, 5%, 10% level

TABLE 6.15: RPL model results — LATIS (trip end variant).
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LATIS flow variant (RPL4) (FM8 starting model)

Random parameters?® Non-random
parameters

variable Mean Z Sig  Std. z Sig Med. Mean  Std. B Z Sig

In(B) dev B B Dev B

In(B)

Nearest station (yes) 0.732 16.4 ***
Time - walk (mins) -2.099 -73.4 *** 0.001 0.0 ns 0.12 0.12 0.00
Time - cycle (mins) -2.135  -36.7 *** 0.000 0.0 ns 0.12 0.12 0.00
Time PT (mins) -2.649 -152.1 *** 0.002 0.0 ns 0.07 0.07 0.00
Time (car) mins -1.471 -67.0 *** 0.002 0.0 ns 0.23 0.23 0.00
Ln(frequency) 0.498 10.5 ***
Full-time (yes)b 1.703 12,9 =**
Part-time (yes)b 0.653 6.4 ***
CCTV (yes) 1.838 3.5 ***
Car park spaces (#) 0.001 8.3
Ticket machine (yes) 0.534 6.4 ***
Toilets 0.473 5.0 ***
On train time (mins) -2.529  -81.2 *** (0.003 0.0 ns 0.08 0.08 0.00
Waiting-time (mins) -1.938 -93.8 *** (0.002 0.0 ns 0.14 0.14 0.00
Bearing diff. (0-5km) -0.004
Bearing diff. (5-10km) -0.007
Bearing diff. (10-15km) -0.010
Bearing diff. (15-20km) -0.013
Bearing diff. (204 km) -0.017
Ln(wact) -0.160

Sample size (# trips) 9366

Initial log-likelihood® -21945
Final log-likelihood -5122
McFadden’s adjusted R2  0.77

AIC 10296.40

Predictive perf. diff. (%) 14.43

4Log normal distribution; inverse of variables entered where negative coefficients expected
bUnstaffed removed from model as reference.
‘Initial LL assumes there is an equal probability of each alternative in a choice set being chosen.

ek wx % indicate significance at 1%, 5%, 10% level

TABLE 6.16: RPL model results — LATIS (flow variant).

the models are compared with a base model where the probability of choosing the nearest
station is equal to one. The graphs in Figures 6.9 and 6.10 show the number of times each
station was actually chosen and by how much the model under or over-predicted this choice,
for the WG base model and WG-FM6, and similar graphs for the LATIS models are provided
in Figures 6.11 and 6.12. These graphs clearly illustrate the substantially better predictive

performance of the flow variant models compared to the base models.

An alternative method of viewing model predictive performance, on a local scale, is to overlay
the under- and over-prediction for each station on a map. Figures 6.13 and 6.14 show the
central Cardiff area with the under- and over-prediction represented as scaled bars positioned
alongside each station, for the base model and WG-FM6 model respectively. Similar maps

are shown for the Central Glasgow area in Figures 6.15 and 6.16. In both cities it is apparent
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WG LATIS
Model Type Model Predictive Model Predictive
perfor- perfor-
mance mance
difference difference
(%) (%)
Nearest station probability = 1 Base model 41.0 Base model 50.9
MNL trip-end variant TE31 20.5 TE25 22.4
MNL flow variant (best performing) FM6 19.0 FM7 14.2
MNL flow variant (comparator) FM1 19.4 FM8 14.4
RPL trip-end variant RPL2 (start TE31) 20.2 RPL3 (start TE25) 22.9
RPL flow variant RPL4 (start FM1) 19.2 RPL4 (start FM8) 14.4
Transferability test (trip-end variant) ~ LATIS-TE25 34.5 WG-TE28 28.0
Transferability test (flow variant) LATIS-FM5 33.1 WG-FM2 25.6

TABLE 6.17: Summary of station choice model predictive performance. Note: a lower value
of the ‘predictive performance difference’ measure is better.

that the base model considerably under-predicts choice of the major stations (Cardiff Central
(CDF), Glasgow Central (GLC) and Glasgow Queen Street (GLQ)), while over-predicting
choice at nearby smaller stations. This problem is largely corrected by the station choice
models, which is particularly encouraging given the very complex interaction of observed

station catchments in these city centre locations (See Figures 4.28 and 4.29 in Chapter 4).

6.6.2 Transferability

One of the ultimate objectives of this research is to develop a generalised station choice
model that is readily transferable and has wide applicability, rather than one that is restricted
to application in the local context in which it was developed. A weakness of the predictive
performance assessment reported above is that the models are validated against the sample
that was used to calibrate them, which can result in an overly optimistic assessment of model
performance. As an initial step to assess model transferability, the graph in Figure 6.17 plots
the parameter estimates, along with the 95% and 99% confidence intervals, for the FM2
models’. The plot indicates reasonable correspondence of many of the parameters for shared
variables, but also identifies potentially problematic variables, such as the provision of CCTV.
This parameter has very wide confidence intervals in the LATIS model, and the large standard
error may be due to the very high proportion of chosen stations (99.8%) that have CCTV
installed. This could indicate that chosen stations have CCTV because nearly all stations
have CCTV (96.1% of the alternatives in the LATIS dataset), and it may only be a factor that

actually influences choice for a few observations.

°Model FM2 was selected for this exercise, as these are the most suitable for comparison — subsequent LATIS
models include the ‘bearing difference’ variable which was inconsistent in the WG models. The HHI variable,
which only appears in the WG model, is excluded from the plot for reasons of clarity, as its parameter has a large
value relative to the other variables
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FIGURE 6.17: Parameter estimates for WG and LATIS model FM2 showing 95% and 99%
confidence intervals.

To assess model transferability, the parameters from the WG-TE28 and WG-FM2 models were
used to predict choice in the LATIS dataset; and parameters from the LATIS-TE25 and LATIS-
FM5 models were used to predict choice in the WG dataset. The predictive performance of
these models when applied to the alternative dataset are reported in Table 6.17. The WG-
TE28 model performed quite well against the LATIS dataset, with a predictive performance
of 28.0%, which compares favourably to the best in-sample trip end variant (LATIS-TE25:
22.4%). The WG-FM2 model performed slightly better, but its predictive performance was
still below that of LATIS-TE25. Neither of the LATIS models performed particularly well
against the WG dataset, with the predictive performance of LATIS-FM5 (33.1%) some way
short of the predictive performance of the best in-sample trip end model (WG-TE31: 20.5%),

although both of the models were an improvement over the base model.

6.7 Combined dataset models

This section is concerned with the calibration of station choice models that were specifically
designed to be incorporated into a national-scale trip end model able to forecast demand
for new local railway stations in GB, which is the subject of Chapter 7. These station choice
models were calibrated using a combined dataset, formed by merging the WG and LATIS
datasets, and as the trip end model methodology does not incorporate an access mode choice

component, mode-specific access journey variables were not included.

The choice sets for these models were composed only of the 10 nearest stations. Unlike
the earlier models, the nearest major station was not appended to the choice set (but may
have been present as one of the nearest 10). This decision was based on concerns related

to the accessibility term. By adding the nearest major station, the choice sets are no longer
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FIGURE 6.18: Example choice set where the nearest major stations (GLC and GLQ) have
been appended.

representative of the true spatial relationships between stations, as all the stations that exist
within the geographic area that encompasses the nearest 10 stations and the appended major
station are not necessarily present in the choice set. This is illustrated in Figure 6.18, which
shows a choice set where Glasgow Queen Street and Glasgow Central have been appended as
the nearest major station(s). These two stations are surrounded by other stations that are in
close proximity, but as far as the choice set is concerned they appear to be spatially isolated
from the other stations, and this artificial spatial construct will impact the calculation of
the accessibility term. As a major station that is appended to a choice set is likely to appear
relatively isolated from other stations, and will only rarely be the chosen alternative (by
definition as appending major stations results in a relatively small increase in the proportion
of observed choice accounted for), this could impose an agglomeration effect on the model

(a positive influence on 0) which moderates an otherwise underlying competition effect.

6.7.1 Model calibration

The first set of models calibrated using the combined dataset were aimed at improving
the representation of the access journey, given that mode-specific access time variables
were no longer included. The results of these models are summarised in Table 6.18. The
best initial model was CMB-TE3, which included the nearest station (by distance) dummy
variable and access distance (adjusted rho-squared: 0.51). This model was improved by

transforming the access distance variable, with a square root transformation performing
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FIGURE 6.19: Utility associated with square root of access distance (0-30 km) using estimated
coefficient —2.26517 (from model CMB-TE24).

slightly better (CMB-TE4: adjusted rho-squared: 0.55) than a log-normal transformation
(CMB-TES5: adjusted rho-squared: 0.54). Both of these models were better in terms of model
fit and the predictive performance measure than similar models estimated using access time
(CMB-TE6 to CMB-TES).

The predictive performance of model CMB-TE4 (56.5%) was not dissimilar to that achieved
by the separate LATIS and WG models with mode-specific access time variables and the
nearest station dummy (WG-TE12: 56.5%; LATIS-TE12: 62.0%). In Figure 6.19, the implied
(dis)utility of access distance, when using a square root transformation and applying the
estimated coefficient of —2.26517, is plotted over a distance of 30km. This shows that
disutility increases more rapidly over shorter access distances. The disutility of walking for 30
minutes (at 3mph) is —3.516, and of driving for 30 minutes (at 30 mph) is —11.13; implying
an average disutility per km travelled of —1.46 and —0.46 respectively. These figures are
higher than the distance-based parameter estimates for walk and car modes obtained from
models WG-TE5 (—1.05 and —0.21) and LATIS-TE5 (—0.88 and —0.13), but not hugely
dissimilar. Given that it is much more likely that shorter access distances will be walked, and
longer access distances will be by a motorised mode, this model does appear able to capture,

to a certain extent, a mode-specific element.

In the subsequent models (CMB-TE10 to CMB-TE20), shown in Tables 6.19 and 6.20, the
same service and facilities variables were tested as in the separate dataset models, with
the exception of the staffing-level variables. When the data on designated staffing level for

stations in England'® (obtained from the NRE knowledgebase) was reviewed, it was found to

0The calibrated choice models would need to be applied throughout GB, so while the staffing level data
appeared reliable for stations in Scotland and Wales (that formed the calibration dataset) a variable that was
accurate across the country was preferable.
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CMB-TE1 CMB-TE2 CMB-TE3 CMB-TE4 CMB-TES CMB-TE6 CMB-TE7 CMB-TE8
Variable B Z Sig B Z Sig B Z Sig B Z Sig B Z Sig B Z Sig B Z Sig B Z Sig
Nearest by distance 2.993 165.9 *** 1.366 48.2 *** (0.578 18.3 *** (0.423 12.4 *** 1.275 45.8 *** (0992 33.9 *** 1111 36.6 ***
Nearest by time 2.809 160.7
Distance -0.367 -50.9 ***
Sqrt(distance) -2.290 -65.5 ***
Ln(distance) -2.016 -68.8 ***
Time -0.217 -57.8 ***
Sqrt(time) -1.498 -65.5 ***
Ln(time) -1.894 -62.0
Sample size (# trips) 14422 14422 14422 14422 14422 14422 14422 14422
Initial log-likelihood? -33025 -33025 -33025 -33025 -33025 -33025 -33025 -33025
Final log-likelihood -18609 -20301 -16048 -14919 -15228 -15914 -15600 -16107
McFadden’s adjusted R 0.44 0.39 0.51 0.55 0.54 0.52 0.53 0.51
AIC 37220 40604 32099 29841 30460 31832 31205 32219
Predictive perf. diff. (%) 65.5 74.8 59.7 56.5 56.9 59.8 59.7 60.8

3Initial log-likelihood assumes there is an equal probability of each alternative in a choice set being chosen.

etk

exx % % indicate significance at 1%, 5%, 10% level

TABLE 6.18: Results of station choice MNL models — combined dataset (1 of 3).
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be unreliable. For example, stations known to be unstaffed were recorded as having full-time
staff. It was therefore decided to use the ‘Category F’ Network Rail station category, which
only includes unstaffed stations, as a proxy for staffing level. This variable was compared to
the unstaffed variable (models CMB-TE10 and CMB-TE11) and the estimated parameter and

model performance were found to be very similar.

The best performing model, prior to including the accessibility term (discussed below) was
CMB-TE19, with an adjusted rho-squared of 0.71 and predictive performance measure of
24.9%. By comparison, the predictive performance of the base model, where the nearest
station has a probability of one, was 42.2%. The utility function for model CMB-TE19, for

individual n at origin i choosing station k is given by the following formula:
Vnik = exp(ﬁNk + Yv Dik + 6Uk + ElI'le + CCk + T]PSk + QTk + LBk), (610)

where D is the access distance by road from origin i to station k; F is the daily service
frequency at station k; Ps is the number of car parking spaces at station k; N, U, C, T and B
are dummy variables that take the value of 1 if station i is the nearest station, unstaffed, has
CCTV, has a ticket machine, or has a bus interchange respectively, and zero otherwise; and f,

Y, 90, €,¢,n, 0, and ¢ are the estimated parameters.

The HHI variable was not tested in the combined dataset models. This is because the
download of POI data from the EDINA Digimap service is restricted to a maximum area of
10,000 km?. It is therefore not possible to download all the POIs for mainland GB. While the
download limit would be sufficient to obtain the POIs within a 400 m? buffer of every station,
the buffers would have to be defined separately for each station and added to the download
basket one at a time. Given the mixed results obtained using this variable in the WG and
LATIS models, it was felt that the available time should be allocated to higher priority tasks.

6.7.2 Accessibility term

The accessibility term incorporates a weighting, which is the annual number of station entries
and exits. Clearly, this figure will not be known for proposed new stations, as it forms
the dependent variable in the trip end demand model. Models with three variants of the
accessibility term were therefore tested. In the first (CMB-TE21), the weight was defined as
the total number of entries and exits at the station in 2014/15. In the second (model CMB-
TE22), the median number of trip entries/exits for each station category (excluding stations
in Inner London) was used; and in the third (model CMB-TE24) a fixed weight for each
station category was chosen, based on the thresholds specified in the category definitions (see
Green and Hall (2009, Annex C)), as shown in Table 6.21. The logarithmic transformation
of the accessibility term was added to each of the models, as suggested by Fotheringham,
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CMB-TE10 CMB-TE11 CMB-TE12 CMB-TE13 CMB-TE14 CMB-TE15 CMB-TE16 CMB-TE17
Variable B z Sig B Z Sig B P4 B z B z Sig B P4 Sig B P4 Sig B z
Nearest distance 0.617 18.4 *** 0.612 18.4 *** 0.690 19.0 0.677 18.7 0.717 19.4 *** 0.718 19.4 *** 0.709 19.0 *** 0.711 19.1
Sqrt(distance) -2.139 -59.1 *** .2.134 -59.4 *** .2258 -57.3 -2.278 -57.7 -2.253 -56.3 *** .2.252 -56.3 *** 2271 -56.6 *** -2.269 -56.4
Category F -2.124 -63.1 *** -0.733 -18.1 -0.681 -16.8 -0.760 -18.4 *** -0.759 -18.4 -0.759 -18.3 *** -0.741 -16.3
Unstaffed -2.231 -63.4 ***
Ln(service frequency) 1.714 59.1 1.698 58.3 1.416 42.4 *** 1417 424 1.252 36.2 *** 1235 32.2
CCTV 1.070 9.1 1.151 9.8 *** 1,152 9.8 *** (0986 8.2 *** (0.998 8.3
Car parking spaces 0.001 15.9 *** 0.001 15.9 *** 0.001 16.2 *** 0.001 16.2
Free car park 0.068 0.7 ns
Ticket machine 0.960 18.9 *** 0.951 18.5
Toilets 0.047 1.0
Sample size (# trips) 14422 14422 14422 14422 14422 14422 14422 14422
Initial log-likelihood?® -33025 -33025 -33025 -33025 -33025 -33025 -33025 -33025
Final log-likelihood -12376 -12244 -10116 -10068 -9937 -9937 -9747 -9747
McFadden’s adjusted R 0.63 0.63 0.69 0.69 0.70 0.70 0.70 0.70
AIC 24757 24494 20240 20146 19887 19889 19508 19509
Predictive perf. diff. (%) 44.7 44.0 29.0 28.6 27.5 27.5 25.7 25.7

176

3Initial log-likelihood assumes there is an equal probability of each alternative in a choice set being chosen.

L

, ¥* * indicate significance at 1%, 5%, 10% level

TABLE 6.19: Results of station choice MNL models — combined dataset (2 of 3).
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with the utility function for individual n at origin i choosing station k becoming:
Vnik = exp(ﬁNk + 71+ Dik + 5Uk + Glan + Z:Ck + ’I’)PSk + QTk + LBk + KlnAk), (611)

where A is the accessibility term, and « the associated parameter to be estimated.

The models incorporating the accessibility term performed slightly better than the best model
without (CMB-TE19), with higher log-likelihood and lower AIC values. The parameter for the
accessibility term was negative and significant at the 1% level in all three models, indicating
that a competition effect is at play. The estimated parameter in CMB-TE24, which uses the
fixed weights, was very similar to the parameter in model CMB-TE21, which uses actual
entries/exits (—0.141 and —0.131 respectively). This suggests that the fixed category-specific
weight is a suitable proxy for the actual number of entries and exits. As the trip end models
are only intended to predict demand at new local stations, which are defined as Category E
or E the appropriate weight will always be known for any proposed new station (given that

category F stations are unstaffed).

Station category Median entries/exits (2014/15) Chosen fixed weight

A 14,870,920 2,000,000
B 4,498,966 2,000,000
C 1,886,992 1,000,000
D 828,660 500,000
E 330,295 250,000
F 52,486 125,000

TABLE 6.21: Alternative derived weights for each main station category, used in the accessi-
bility term.

6.7.3 Models with nearest major station appended to choice set

For purposes of comparison, the same calibration process was repeated using choice sets with
the nearest major station appended. The final models, with and without the accessibility
term, are shown in Table 6.20 (CMB-MN-TE12 and CMB-MN-TE14). The accessibility term,
while significant at the 1% level, had a positive sign, indicating an agglomeration rather than
competition effect. This would appear to justify the decision not to use choice sets with the
nearest major station appended, due to them not representing the true spatial relationships
between stations. The models with the nearest major station appended were also inferior
in terms of the predictive performance measures, with 28.4% for model CMB-MN-TE12,
compared to 24.9% for model CMB-TE19. This is not surprising given the additional difficulty
of explaining the choice of a more distant station, especially when no account is taken of
components of the train leg in these models, such as fewer transfers or a faster overall journey
time.
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6.7.4 Assessing model predictive accuracy

The predictive performance of the best combined dataset models reported in Table 6.20
represent an in-sample assessment against the data that was used to fit (train) the models.
However, due to inevitable idiosyncrasies (‘noise’) of the training dataset and the risk of
over-fitting, a predictive model will nearly always perform less well against a new dataset;
a phenomenon known as ‘validity shrinkage’ or ‘training optimism’ (Fortmann-Roe, 2018;
Ivanescu et al., 2015). In order to quantify the extent of this problem two techniques were
adopted: a k-fold cross-validation; and application of the model(s) to data from the LATIS

2013 survey (which was not used in model calibration'!).

By combining these two methods the shortcomings of each can be overcome and a more
comprehensive understanding of the likely predictive performance of the model(s) on new
data is possible. The LATIS 2013 dataset was relatively small (1,190 choice situations) and as
predictive accuracy assessed against a single independent sample is subject to high variability,
assessment of the model(s) against another survey might give quite different results. While a
single k-fold cross-validation is also subject to high variability, it can be repeated multiple
times enabling the stability of the model to be assessed and an average estimate of the model
accuracy to be calculated (Vanwinckelen & Blockeel, 2012). An advantage of validating
against an independent survey is the ability to consider the problem of an individual’s
observed choice not necessarily appearing in the researcher-defined choice set, thus allowing
this additional cause of validity shrinkage associated with choice models to be investigated.
As it was considered important that the maximum amount of information was available to
the models during calibration, the k-fold cross-validation technique was chosen in preference

to using a holdout sample.

6.7.4.1 k-fold cross-validation

In k-fold cross-validation the dataset is randomly divided into k (typically 5 or 10) equally
sized subsets, known as folds. Each fold is, in turn, excluded from the dataset and the
model is estimated on the remaining folds. The estimated model is then applied to the
excluded fold and the desired measure of predictive performance is calculated. Each fold
therefore acts as the validation dataset once. The average of the k predictive performance
measures is considered to be an estimate of the predictive accuracy of the model. There
is potential for high variance in this estimate, as a second k-fold cross-validation, with a
different random division into folds, could produce a very different result. This can be
investigated by performing repeated cross-validations, with an average of the estimates from
each repeat taken as the predictive accuracy of the model (Vanwinckelen & Blockeel, 2012).

HAlthough the data from the 2013 survey was processed along with that of 2014 and 2015, when the choice
sets were compiled observations from the 2013 survey were excluded. This was to enable a common universal
set of stations to be defined from which the alternatives for each choice set were selected (several new stations
were opened subsequent to the 2013 survey).
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A 10-fold cross-validation repeated 10 times was completed for models CMB-TE24 and CMB-
TE19 (the ‘best’ models with and without the accessibility term). The sample () function
in R was used to allocate each choice situation in the dataset to a fold. This was repeated
ten times. A procedure was written in NLOGIT to automate the process of estimating the
model on k —i folds and calculating the choice probabilities for fold i. For comparison, the
same fold and repeat structure was used to calculate predictive accuracy of the base model
(i.e. the predictive performance of each fold was estimated on the basis that the probability
of the nearest station being chosen was one). The results for each fold and each repeat are
summarised in Tables 6.22, 6.23 and 6.24. In addition to showing the accuracy estimate
for each repeat (CV pred. perf. %) and the average of this estimate for all repeats, these
tables include several summary measures (mean, maximum, and standard deviation) of the
absolute difference (between sum of actual choice and sum of probabilities) for each station

in the dataset.

Predictive performance difference (%) of each fold Summary
measures of
station absolute

difference

Rpt. 1 2 3 4 5 6 7 8 9 10 cv Mean Max Sd

pred.

perf.

(%)
1 26.90 25.02 27.98 28.49 26.44 27.75 29.60 32.17 28.96 28.35 28.17 8.01 236.67 19.08
2 29.12 27.70 29.58 28.65 28.45 28.89 26.55 29.43 27.75 28.22 28.43 8.09 236.90 19.15
3 28.72 26.70 31.48 23.76 28.97 27.45 26.60 28.30 30.95 29.72 28.26 8.04 236.78 19.12
4 29.54 27.06 28.04 28.97 29.41 28.22 29.78 26.99 26.67 29.70 28.44 8.09 236.73 18.98
5 29.84 28.83 28.78 27.60 29.94 28.08 28.77 28.12 28.03 27.09 28.51 8.11 236.75 19.05
6 28.45 30.00 27.81 28.97 26.82 27.33 28.07 31.77 27.68 26.80 28.37 8.07 236.97 18.97
7 27.59 28.38 27.45 28.37 31.68 26.28 27.42 28.72 27.71 27.50 28.11 8.00 236.90 18.99
8 29.95 28.67 26.20 26.67 30.22 30.66 26.80 28.44 25.69 28.00 28.13 8.00 236.82 19.07
9 26.37 29.34 27.65 26.89 28.64 30.37 26.40 28.13 28.52 30.82 28.31 8.05 236.93 18.95
10 29.40 26.28 27.91 28.86 30.80 25.66 28.34 29.15 27.54 28.22 28.22 8.03 236.68 18.99

Average of all repeats 28.30 8.05 236.81 19.04

TABLE 6.22: Summary of the predictive performance difference (%) for 10-fold cross valida-
tion of model CMB-TE24 repeated 10 times.

The results show that the average predictive performance measure of all repeats is 28.3% for
model CMB-TE24, which is marginally better than the 28.6% for model CMB-TE19. This
represents a small reduction in model predictive performance, of 3.9 and 3.7 percentage
points respectively, compared to the in-sample assessment. It should be noted that there
are potential sources of both pessimistic and optimistic bias to this estimate of predictive
performance. As the model is only ever calibrated on a maximum of 90% of the choice
situations in the dataset it is likely to be slightly less accurate than a model calibrated on the
full dataset, and therefore pessimistically biased (Vanwinckelen & Blockeel, 2012). However,
as the full dataset was used to select the predictor variables and identify the ‘best’ model(s),
there is also potential for optimistic bias as information from the excluded folds informed

this procedure (Ivanescu et al., 2015).
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Predictive performance difference (%) of each fold Summary
measures of
station absolute
difference
Rpt. 1 2 3 4 5 6 7 8 9 10 CvV Mean Max Sd
pred.
perf.
(%)
1 26.88 25.07 28.40 28.99 26.75 28.13 30.02 32,57 28.96 28.66 28.44 8.09 257.28 19.58
2 29.55 28.25 29.57 29.08 28.79 29.31 26.97 29.90 27.69 28.42 28.75 8.18 257.42 19.71
3 29.16 26.81 31.89 24.20 29.48 27.78 26.99 28.42 31.33 30.19 28.62 8.14 257.28 19.68
4 30.01 27.02 28.46 29.40 29.80 28.65 30.03 27.48 26.56 30.13 28.76 8.18 257.22 19.52
5 30.25 29.21 28.72 28.01 30.39 28.57 29.18 28.58 28.31 27.24 28.85 8.21 257.37 19.62
6 28.92 30.31 28.05 29.42 27.19 27.77 2851 31.95 2819 27.09 28.74 8.18 257.41 19.53
7 27.88 28.73 27.44 28.38 31.90 26.67 27.84 28.84 28.21 27.97 28.39 8.07 257.32 19.50
8 30.28 28.67 26.66 27.12 30.58 30.91 27.24 28.87 25.82 27.99 28.41 8.08 257.34 19.56
9 26.51 29.58 28.08 27.32 29.07 30.85 26.82 28.63 28.88 30.79 28.65 8.15 257.42 19.50
10 29.53 26.35 28.38 29.34 31.16 26.01 28.79 29.56 28.01 28.61 28.57 8.13 257.25 19.53
Average of all repeats 28.62 8.14 257.33 19.57

TABLE 6.23: Summary of the predictive performance difference (%) for 10-fold cross valida-
tion of model CMB-TE19 repeated 10 times.

Predictive performance difference (%) of each ‘fold’

Summary
measures of

station absolute

difference

Rpt’ 1 2 3 4 5 6 7 8 9 10 Avg. Mean Max Sd

pred.

perf.

(%)
1 44.94 43.69 46.32 44.45 39.81 4591 48.27 4570 46.05 42.87 44.80 12.74 483 38.42
2 44.73 44.80 47.71 45.42 45.84 4591 43.90 45.84 41.75 45.01 45.09 12.83 483 38.48
3 47.64 4293 46.67 42.86 45.63 47.85 41.75 4591 47.64 44.67 45.35 12.90 483 38.44
4 45.15 41.47 46.39 46.88 47.57 44.59 46.53 42.86 45.01 42.52 4490 12.77 483 38.45
5 45.77 44.59 46.32 45.84 44.38 46.88 46.32 44.04 45.21 43.49 45.29 12.88 483 38.51
6 50.21 45.35 41.68 46.67 43.48 43.48 44.80 47.78 46.46 43.77 45.37 12.91 483 38.43
7 43.97 45.42 43.76 44.31 48.47 44.38 44.52 44.80 43.07 45.43 44.81 12.75 483 38.45
8 47.16 44.31 45.77 44.45 43.48 45.42 45.63 42.86 45.42 48.89 45.34 12.90 483 38.48
9 43.34 47.57 41.89 43.48 45.77 48.68 44.80 47.78 42.72 43.77 4498 12.79 483 38.47
10 47.30 44.24 4230 44.66 46.53 43.27 44.04 44.45 44.52 48.20 4495 12.79 483 38.42

Average of all ‘repeats’  45.09 12.83 483 38.46

TABLE 6.24: Summary of the predictive performance difference (%) for the base model
(probability of nearest station being chosen equals one) calculated for the same fold and
repeat structure as the k-fold cross validation.
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There is very low variance in the average predictive performance measure between repeats,
with a maximum difference of 0.4 for both models, indicating a high level of model stability.
Both models perform considerably better than the base model in terms of their overall
predictive performance (base model: 45.1%) and in terms of the summary measures of
station absolute difference, with the lower mean difference accompanied by a substantially
smaller maximum difference and standard deviation. The predictive performance of the
base model and CMB-TE24 for each individual station is shown in Figures 6.20 and 6.21
(based on the first cross-validation repeat with probabilities summed across the folds). The
Exhibition Centre station in Glasgow is marked in these figures, providing an example of a
station that was only chosen once in the dataset and substantially over-predicted by the base

model; an issue largely corrected by model CMB-TE24.

6.7.4.2 Validation using an independent sample

The predictive accuracy of several models was assessed against a survey carried out by LATIS
in 2013. The data from this survey were prepared along with the data from the 2014 and
2015 surveys, as described in Chapter 4. The validated dataset contained 1,190 choice
situations and was based on interviews carried out in early February. While the interviews
were conducted across Scotland, they were concentrated in the Highlands and Moray, areas
that were under-represented in the 2014 and 2015 surveys (see Figure 6.22). Choice sets
were prepared in the same manner as those for the WG and LATIS 2014 and 2015 datasets (as
described in Section 6.3), both with and without the nearest major station being appended

(if not already present).

In order to obtain an unbiased assessment of the predictive accuracy of the models, any
choice situations where the chosen station was not present in the choice set were removed
(the impact of missing chosen stations on model validity will be considered in due course).
A summary of the predictive performance of the models when applied to the 2013 dataset,
along with a comparator base model, is shown in the left-hand side of Table 6.25. Results
based on choice sets compiled with and without the nearest major station appended are
included. For the former, the predictive performance measures for models CMB-TE19 and
CMB-TE24 are very similar (23.11% and 23.30% respectively) and a noticeable improvement
over the estimate from the cross-validation exercise (around 28%). The base model has also
performed much better against this dataset (30.48% compared to 45.09%). The improvement
in the base model can be explained by the much higher proportion of choice situations where
the nearest station was chosen (82% compared to 69% for the combined dataset), and this
is also likely to account for the better performance of the other models. Nevertheless, it is
reassuring that models CMB-TE19 and CMB-TE24 still out-perform the base model by seven
percentage points when the proportion of observations choosing their nearest station is so
high. When choice sets with the nearest major station appended are used for the assessment,

there is a noticeable deterioration in predictive performance. This would be expected given
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FIGURE 6.22: Trip origins for LATIS surveys.

the poorer in-sample performance of model CMB-MN-TE12 (see Table 6.20) and the absence
of variables related to the train-leg in this model, such as on-train time and waiting time,

without which it will struggle to adequately account for long access journeys to board at a

major station!2.

Analysis includes only choice sets
where chosen alternative present

Analysis includes all choice sets
(absolute difference adjusted)

Major station not Major station Major station not Major station
appended appended appended appended
TE19 TE24 Base TE12  Base TE19 TE24 Base TE12 Base
Choice situations 1073 1073 1073 1142 1142 1190 1190 1190 1190 1190
Sum 248 250 327 372 465 447 443 521 439 521
Measures of Mean 1.39 140 184 140 175 152 150 177 149 1.77
station absolute
difference ax 68 67 80 112 126 117 116 129 115 129
Sd 580 575 6.76 7.59  8.46 7.81 7.75  8.57 7.76 857
Pred. Perf. (%) 23.11 23.30 30.48 32.57 40.72 37.56 37.23 43.78 36.89 43.78

TABLE 6.25: Summary of predictive performance of combined station choice models and
comparator base models against 2013 LATIS survey.

For the analysis based on choice sets without the nearest major station appended, a total
of 117 choice situations were removed because the chosen station was not in the choice
set, representing 9.8% of the total. When the nearest major station was appended to the
choice sets it was only necessary to remove 48 choice situations, representing 4% of the total.
Table 6.26 summarises the chosen stations that were missing from the choice sets in each

12An important effect of appending the nearest major station without incorporating train-leg variables is
to reduce the size of the negative parameter for access distance (from —2.265 in CMB-TE24 to —1.836 in
CMB-MN-TE12). In comparison, when the train-leg variables were introduced into the separate LATIS and WG
models (which have the nearest major station appended), the size of the negative parameter for access distance

increased as the longer access journey could be better explained (e.g. LATIS-TE25 compared to LATIS-FM1 in
Tables 6.10 and 6.11, as discussed in Section 6.4.2.1).
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case. For choice sets without the nearest major station appended it can be seen that three
major stations are responsible for the vast majority of missing chosen stations: Inverness,
Perth and Glasgow Queen Street. When the nearest major station is appended to the choice
sets, the issue is largely corrected for Inverness and Glasgow Queen Street, although Perth
remains problematic with only a small reduction. While these findings support the decision
to incorporate the nearest major station in the choice sets for the separate WG and LATIS
model calibration, there is clearly a trade-off between accounting for a greater proportion of
observed choice and a reduction in the predictive performance of the model (at least when

train-leg variables are not present).

To get a fuller appreciation of the potential reduction in predictive accuracy of the models
when applied to new data it is necessary to also assess the impact of these missing chosen
alternatives. This was achieved by repeating the analysis with all choice situations included
and in those cases where the chosen station was missing from the choice set, adjusting the
absolute difference for the affected station. For example, if an individual chose Inverness but
it was not in their choice set, the calculated absolute difference for Inverness (between the
number of times it was actually chosen and the sum of its probabilities across the model)
was incremented by one. This adjustment is equivalent to assuming that Inverness was in
the individual’s choice set but was assigned a probability of zero by the model. The results of
this analysis are shown on the right-hand side of Table 6.25, with and without the nearest
major station appended to the choice sets. As expected, there is a substantial reduction in
predictive accuracy, with the performance difference measure increasing from 23% to around
37% for models CMB-TE19 and CMB-TE24. The performance of model CBM-MN-TE12 is also
reduced, but to a lesser extent, reflecting the lower number of missing chosen alternatives.
However, there is now very little difference between the three models, confirming that a
trade-off exists between accounting for a greater proportion of observed choice and the
predictive accuracy of a model that does not contain train-leg variables that can adequately

explain these observed choices.

It should be noted that the LATIS 2013 dataset contains a higher proportion of choice
situations where the chosen alternative is not present in the choice sets (when major station
not appended) than the calibration datasets: 9.8%, compared to 7.9% and 5% for the LATIS
(2014 & 2015) and WG datasets respectively. This probably reflects the higher proportion of
trip origins located in remote parts of the Highlands, where passengers have preferred to
make a very long access journey to Inverness rather than board at a more local station and
take a slow service (where it would be necessary to change at Inverness in any case for their
onward journey). The extent of this behaviour is illustrated in Figure 6.23, where the red
markers indicate trip origins where Inverness was chosen as the boarding station. Given that
this is likely to be a particular characteristic of the 2013 LATIS survey, the degree that model
predictive accuracy has been penalised when the missing chosen alternatives are taken into
account may be overstated and not indicative of the expected performance of the models

more generally.



186 Chapter 6 Station choice models

Chosen alternatives
missing from choice sets

Major Major

station not station

appended appended
Station Major Number Number
Inverness Y 50 4
Perth Y 37 34
Glasgow QS Y 20 2
Huntly N 3 3
Aberdeen Y 2 2
Haymarket Y 2 NA
Aviemore N 1 1
Gleneagles N 1 1
Stirling Y 1 1
Total 117 48
% of choice situations 9.83 4.03

TABLE 6.26: Summary of chosen stations missing from choice sets for LATIS 2013 survey
validation, with and without the nearest major station appended.

6.8 Conclusions

This chapter has shown that it is possible to calibrate station choice models, using two
independent and geographically distinct datasets, that are suitable for integration into both
trip end and flow rail demand models. The best MNL models had a very good fit as measured
by adjusted rho-squared and predicted station choice substantially better than a base model
where the nearest station was assumed to have a probability of one. There was reasonably
good coincidence in parameter estimates for many of the explanatory variables across the
two datasets, indicating that the models have the potential to be transferable. This was
tested by applying the best WG calibrated models to the LATIS dataset and vice versa, with
somewhat mixed results, although in all cases the predictive performance of these models

was superior to the base model.

The trip end variant RPL models showed that individual variation in parameter estimates was
only significant for the mode-specific access time variables; and for the LATIS dataset there
was no significant variation once the train leg variables had been introduced. There was
only a marginal difference between the predictive performance of the MNL and RPL models,
and the RPL models do not, therefore, appear to offer sufficient improvement over the MNL

models to justify the extra complexity and time that would be involved in simulating station
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FIGURE 6.23: Trip origins for the LATIS 2013 survey. Red markers indicate those where
Inverness was the chosen origin station.

probabilities for every unit postcode in GB (a requirement for calibrating a national-scale

aggregate model).

The accessibility term, intended to account for spatial correlation between stations and
potentially address the issue of proportional substitution, was found to have a significant
and negative parameter in the trip end and flow variant MNL models, the flow variant LATIS
model, and the combined dataset model. This indicates that there is a competition effect
at play, and the closer a station is on average to other, and more ‘attractive’, stations, the
less likely it is to be chosen. In the models where the parameter was positive, this may have
been caused by the artificial spatial construct of choice sets with the ‘nearest major’ station
appended. It remains to be seen, however, to what extent the estimated parameter will
modify proportional substitution and what impact this might have on station abstraction

forecasts.

The superior predictive performance of the station choice models compared to the base
model suggests that they have the potential, through a more realistic representation of
station catchments, to improve the aggregate models that are commonly used to assess
proposals for new railway stations. The next chapter will focus on the development and

application of a methodology to incorporate probabilistic station catchments, derived using
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the combined dataset station choice model which was calibrated for this purpose, into a

national-scale trip end model.



Chapter 7

Integrated trip end and station
choice models

7.1 Introduction

This chapter is concerned with the development of enhanced trip end models to forecast
demand for local railway stations in Great Britain. Section 7.2 sets out the background to
this work, explaining how it builds on earlier research by incorporating probability-based
station catchments; utilising much smaller-scale origin zones; and extending the calibration
dataset to include Scotland. The preparation of the calibration dataset and derivation of the
explanatory variables for the models are then described in Section 7.3. In Section 7.4, the
proposed general model form that incorporates a probabilistic catchment is presented, and
the key differences from the earlier research are discussed, including the estimation of decay
functions from observed data. Section 7.5 explains the processes used to generate a choice
set of railway stations for every unit postcode in mainland GB and to calculate the choice
probabilities. The results of the model calibrations, which for comparative purposes include
models which adopt either deterministic or probabilistic approaches to defining the station
catchments, are presented in Section 7.6. The chapter then closes by summarising the work

completed and drawing some conclusions (Section 7.7).

7.2 Background

Previous research carried out at the University of Southampton Transportation Research
Group has successfully developed linear regression models to forecast the number of trips
made to/from local railway stations in England and Wales (Blainey, 2010). In these trip

end models, local stations were considered to be those assigned to Network Rail categories

189
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E and F (otherwise known as ‘small staffed’ and ‘unstaffed’ stations). Station catchments
were defined by allocating census output areas in England and Wales to their nearest station
by road distance and applying a distance decay function to the population associated with
each output area (from the 2001 Census), reflecting the expectation that the number of
trips generated by the population of an output area will fall as the distance from the station
increases. The best models were found to explain over 75% of variation in the observed data,
and to better predict actual demand on the Ebbw Vale branch line (which opened in 2008)
than the methods used in the feasibility study carried out prior to scheme approval. As part
of consultancy work carried out for the Welsh Government, these models were subsequently
re-calibrated using more recent data, including output area population from the 2011 census
and station entries and exits (the basis of the dependent variable) from 2011/12 (Blainey,
2017).

These more recent trip end models have been taken as the starting point for developing
new trip end models that incorporate probability-based catchments derived using the station
choice models described in Section 6.7. These new models extend the earlier work in several
key respects. Firstly, they are calibrated for stations in the whole of mainland GB, and not
restricted to England and Wales. Secondly, unit postcodes are used to define catchment
zones rather than census output areas; providing a much higher spatial resolution to the
population data (there are some 1.5 million unit postcodes covering GB, compared to less
than 0.25 million output areas). Thirdly, rather than assigning the population of each zone
to its nearest station, the population is allocated to each station in a zone’s choice set based

on the probability that each station will be chosen, thus defining a probabilistic catchment.

7.3 Calibration dataset

In line with the earlier work carried out by Blainey (2017), the calibration dataset was defined
as those railway stations assigned to Network Rail categories E and E The categorisation
of stations in England and Wales was last reviewed in 2009, with the revised categories
published in a report commissioned by the Department for Transport (Green & Hall, 2009).
This report was used as the definitive source for stations in England and Wales. Unfortunately,
there does not appear to be an equivalent published list for stations in Scotland. Instead,
a spreadsheet held within the Transportation Research Group containing this information
was used!. Any station that opened after these lists were compiled was manually allocated
to a category based on the category descriptions contained in Green and Hall (2009). The
affected stations and the categories assigned are shown in Table D.2 in Appendix D.

Only stations that opened prior to 1 April 2011 were selected for inclusion in the calibration

dataset. This date was chosen to ensure that all stations had been open for a full twelve

The ultimate source of this information is not clear, but it certainly pre-dates the 2009 review of English and
Welsh stations.
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months when the annual station entries and exits data (used for the dependent variable)
was compiled by ORR for the financial year 2011/12 (which ran from 1 April 2011 to 31
March 2012).

Some Category E and F stations were removed from the calibration dataset for several
reasons. Those with no weekday service, restricted public access or located on the Isle of
Wight were removed (i.e. any Category E or F station listed in Table D.5 in Appendix D). For
ticketing purposes some stations (usually within the same town or city but on different lines)
are grouped under a single common location, allowing passengers to travel to or from any
station in a group (from or to any stations outside the group) using the same ticket. As a
consequence, there is no accurate information available from the ticketing system on the
number of trips made to or from these stations, and although the trips are apportioned to
individual group stations in the data released by the ORR, this is likely to be unreliable. The
groups were identified from the ATOC fares feed (further information is provided in Section
D.1.3 in Appendix D), and any group stations were removed from the calibration dataset?
(the station groups and member stations are summarised in Tables D.3 and D.4 in Appendix

D). Following these removals, the final calibration dataset consisted of 1,792 stations.

7.3.1 Dependent variable

The basis of the dependent variable used in the trip end models was the total number of
station entries and exits in the financial year 2011/12 as reported by the ORR (Office of Rail
and Road, 2013).

7.3.2 Explanatory variables

The explanatory variables selected for inclusion in the models were based on those used to
calibrate the previous trip end models (Blainey, 2017).

7.3.2.1 Workplace population

The number of usual residents aged 16 to 74 in employment the week before the 2011
census was obtained for each workplace zone in England and Wales from the NOMIS service
(Nomis, 2014); and for each census output area® from Scotland’s Census Data Warehouse
(Scotland’s Census, 2016). Each dataset was then merged in R with its corresponding
population weighted centroids dataset obtained from the UK Data Service (UK Data Service,
2011), and then a combined GB dataset was exported into CSV format for use in subsequent

ArcGIS analysis.

2Bicester Village station was not removed from the dataset as the Bicester North and Village group was not
created until 28 July 2015.
3For Scotland, workplace population was not available using the new workplace zone geography.
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Within ArcGIS, polygons were generated to represent the area accessible by road within
one, two, three and four minutes drive-time of each category E and F station, using a 'New
Service Area’ analysis and the Open Roads network described in Section 7.5.2. Using a series
of spatial joins, the workplace population within one, two, three and four minutes of each
station was calculated by summing the population associated with any OA or workplace
weighted centroid contained within each of the drive-time polygons. This information was
then exported to DBF files, and subsequently imported into R during preparation of the trip

end model data frame.

This approach has some limitations, as there will be instances where although part of a
workplace zone falls within a travel time polygon, the zone centroid itself does not, and
therefore no jobs will be included for that zone. A possible solution would be to distribute
the workplace population within the zone, for example by creating a grid within each zone
polygon and proportioning the population to each cell, potentially taking into account the

placement of buildings, but unfortunately there was insufficient time to explore this further.

7.3.2.2 Train frequency

The train frequency at each station was obtained from train schedule information using
a similar procedure to that used to derive this variable for the station choice models (see
Section 5.4.2), with the data obtained in GTFS format, loaded into a series of PostgreSQL
database tables, and then a suitable query run to obtain the train frequency for each station.
The earliest suitable version of the schedule in GTFS format, dated 23 November 2013, was
downloaded from the maintained archive* (see PotsgreSQL code segment B.2 in Appendix
B).

7.3.2.3 Electric trains

The power type of trains is available in the schedule feed provided by Network Rail. Following
a request to the ‘openraildata-talk’ Google Group, one of the group members provided a URL to
retrieve all stations in the current timetable served by electric and electric multiple unit trains
(the only electric power types recorded in the timetable at that time) (live-departures.info,
2017). Although this data source formed the basis of the variable, it needed to reflect the
situation in 2011/12 (the base year for the model calibration), rather than 2017 when it was
retrieved. Therefore, in addition to creating a boolean variable in the ‘stations’ database table
to indicate those stations served by electric trains, an additional field was created to record,
for all schemes completed since 2011, the date that electric services began. This information

was manually collated from a variety of on-line governmental, news and reference sources.

“The archive for the weekly GTFS feed prepared by http://www.gbrail.info/ is located at http://
transitfeeds.com/p/association-of-train-operating-companies/284


http://www.gbrail.info/
http://transitfeeds.com/p/association-of-train-operating-companies/284
http://transitfeeds.com/p/association-of-train-operating-companies/284

Chapter 7 Integrated trip end and station choice models 193

This enabled a database query to be run to select only those stations served by electric trains
as of 31 March 2011.

7.3.2.4 Travelcard boundary

Travelcard boundary stations were identified for schemes running in eight cities and regions of
GB: Strathclyde (Roundabout Ticket), London (Zones 1-6 Travelcard), West Midlands (Centro
supported area), Merseyside (Merseyrail Railpass area), Manchester (Greater Manchester
ticketing boundary), West Yorkshire (METRO Zones 1-5), Tyne & Wear (Travelcard Zones
1-5); and South Yorkshire (PTE TravelMaster area). Where possible the boundary stations
were identified based on the schemes that were running in 2011, and particular use was made
of the collection of past rail schematic maps and diagrams provided by Project Mapping®.
A total of 62 Category E and F stations were identified, and these are listed in Table D.1 in
Appendix D.

7.3.2.5 Nearest Category A-D station

All category A, B, C, C1, C2, and D stations opened prior to 1 April 2011 were selected from
the database along with their coordinates. These were then imported into ArcGIS, and an
OD cost matrix analysis was carried out to find the nearest category A-D station by distance
to each of the Category E and F stations in the calibration dataset, using the Open Roads
network.

7.3.2.6 Terminus stations

This variable indicates whether or not a station forms the limit of passenger services on a
particular line. To save unnecessary manual work, the data compiled during prior research
carried out by Blainey (2017) was merged with the trip end model dataset. All stations where
the terminus status was unknown, which included all stations in Scotland, were plotted in

QGIS over a transport network base map to aid rapid identification of terminus stations.

7.3.2.7 Population

The resident population at the unit postcode level was obtained in CSV format from the
NOMIS web service for England and Wales (Nomis, 2013) and from ‘Scotland’s Census’
website for Scotland (Scotland’s Census, 2013). For further information on the preparation
of the postcode data see Section 7.5.1.

See: http://www.projectmapping.co.uk/rail_maps_diagrams.html


http://www.projectmapping.co.uk/rail_maps_diagrams.html
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7.4 Model form

7.4.1 Previous models

The starting point for the trip end model calibration was a model developed during previous
work (Blainey & Preston, 2013b) and subsequently calibrated using more recent sources of
the dependent and explanatory variables (Blainey, 2017). The model form when applied in

forecasting mode is as follows:
z
InV,=a+p (IHZPZWZ) +yInF;+6InT; + elnJ; + {InPs; + nTe; + OEl; +1B;, (7.1)
b4

where V; is the estimated annual passenger entries and exits for station i; P, is the resident
population of zone z; Z is all zones where the closest station by car travel time is station
i; w, is a distance decay function; F; is weekday train frequency at station i; T; is distance
in km from station i to the nearest Category A-D station; J;, is the number of jobs within ¢
minutes drive of station i, Ps; is the number of parking spaces at station i, and Te;, El; and
B; are dummy variables that take the value of 1 if station i is a terminus station, served
by electric trains or a travelcard boundary station respectively, and zero otherwise; and
a,B,y,0,€,{,m,0and ¢ are the estimated parameters. The distance decay function w, was
specified as (t +1)732°, where t is the road travel time from zone z to its closest station. The
version of this model that gave the best model fit (as measured by adjusted R?) specified the
number of jobs within two minutes drive time of each station, and the reported results are

summarised in Table 7.1.

Variable Parameter t-statistic
Intercept 3.992 24.660
Population 0.228 12.370
Employment (2 mins) 0.068 7.982
Train frequency 1.294 42.685
Distance to Cat A-D station 0.103 3.637
Car park spaces 0.157 14.018
Terminus dummy 0.767 7.701
Electrification dummy 0.238 4.914
Travelcard boundary dummy 0.490 4.166
Adjusted R? 0.822

TABLE 7.1: Results of trip-end model developed by Blainey (2017).
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7.4.2 New models

While the new models follow a similar approach to those described above, they differ in

several respects:

* In addition to allocating the population of each zone to its nearest station (for compar-
ative purposes), the population of each zone is allocated to 10 (or more) alternative

stations based on the probability of those stations being chosen.

* The most suitable distributions to represent both time and distance decay effects are
identified, and function parameters estimated based on observed station access trips in
the LATIS and WG datasets.

* The calibration dataset is larger (279 additional stations) as stations in Scotland are

included.

* The zones used to define catchments are unit postcodes rather than census output

areas.

* The road network from which distance or time related explanatory variables are
obtained is based on the more detailed OS Open Roads dataset, rather than Meridian
2.

The first two items listed above will now be examined in more detail.

7.4.2.1 Trip decay functions

Appropriate trip decay functions, both time and distance-based, were obtained by analysing
the access trips in the revealed preference survey data (LATIS and WG). Histograms of access
time and access distance (as measured assuming car as access mode) were produced for the
observations where the chosen station was designated Category E or E as shown in Figures
7.1 and 7.2. One minute or 250 m bins were defined, and the number of bins was limited so
that while nearly all observations were accounted for, a very large number of empty bins in
the long right-hand tail of the distribution was avoided. The time and distance-based bins
accounted for 99% and 98% of the 5,574 observations respectively. The histograms indicate
that the decay does not begin until after the two-minute or 750 m bins, suggesting that a
two-stage decay function would be appropriate, with no weighting applied to the population

of any zone (i.e. postcode centroid) within either of these thresholds of a station.

The ‘huff.decay’ function of the MCI R package (Wieland, 2017) was used to estimate a time-
and distance-based decay function using different function types (linear, power, exponential
and logistic). As the observed decay does not begin until after the two-minute or 750 m

bins, observations within those thresholds of their chosen station were removed prior to the
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FIGURE 7.3: Output from the huff.decay() function using time bins.

relevant decay function being estimated. The results are shown graphically in Figures 7.3

and 7.4, and summarised in Tables 7.2 and 7.3.

The results show that an exponential function (slope —0.2432) gives the best fit to the access
time data, with an adjusted R? of 0.99; while a power function (slope —1.5212) gives the
best fit to the access distance data, with an adjusted R? of 0.91, slightly better than the
exponential function with adjusted R? of 0.90. Figures 7.5 and 7.6 show a simulated decay
for an initial population of 10,000 using the estimated power and exponential distance-based
decay functions respectively. These support choosing the power function as the preferred
model, as it appears to better represent the observed distribution (as shown in figure 7.2),

with a deeper initial decay profile.
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FIGURE 7.4: Output from the huff.decay() function using distance bins.

Model type  Intercept p Intercept  Slope p Slope  R-Squared  Adj. R-squared
Linear 643.6810 0.0000 -38.8584  0.0000 0.7021 0.6864
Power 3540.7886 0.0000 -1.7272 0.0000 0.8674 0.8604
Exponential  1230.4066 0.0000 -0.2432 0.0000 0.9907 0.9902
Logistic -1.9904 0.0001 0.3563 0.0000 0.8613 0.8540

TABLE 7.2: Time decay function estimate.

Model type Intercept  p Intercept  Slope p Slope R-Squared Adj. R-squared
Linear 287.3283 0.0000 -33.9315 0.0000 0.5073 0.4959
Power 314.4850 0.0000 -1.5212  0.0000 0.9126 0.9106
Exponential  341.2106 0.0000 -0.4066 0.0000 0.9036 0.9014
Logistic -0.2016 0.4931 0.5197 0.0000 0.7631 0.7575

TABLE 7.3: Distance decay function estimate.
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7.4.2.2 Probabilistic catchment definition

To incorporate probabilistic station catchments into a trip end model, the model shown in

7.1 can be amended to the following form:
z
InV,=a+p (lnzprzipzwzi) +yInF; + 6 InJ; + €lnPs; + {Te; + nEl; + 0B;, (7.2)
b4

where Pr,; is the probability of someone located in zone z choosing station i; Z now consists
of all zones which have station i within their choice set; and T; has been removed from this
model. T; was incorporated to try to capture potential competition effects of nearby larger
stations, something that should now be more adequately captured by the station choice
component. An intuitive interpretation of the bracketed part of the equation is the trip
generation potential of the population expected to use a station. This is the proposed general
form of the model, with the nature of the zone being defined by the researcher. In the case of
the models reported here, the zone is defined as the unit postcode, and the two-stage decay

function w,;, is either distance-based:

bt}

(d+1)"1212 ifd > 0.75
Wy = (73)
1 otherwise,

where d is the road distance in km from zone % to station i; or time-based:

o(—2432xt)  iff > 9
Wy = (7.4)
1 otherwise,

where t is road travel time in minutes from zone g to station i.

The next section will describe the process of generating station choice probabilities for every
postcode in mainland GB, a level of detail needed to calibrate a national model. It should
be noted that while the trip end model calibration dataset only contains Category E and
F stations (the ‘local’ stations that the model will be used to forecast), all stations, of any
category, are eligible to be included in the choice set of each postcode.

7.5 Generating station choice probabilities for Great Britain

In order to generate the station choice probabilities, it was necessary to first define a station
choice set for every unit postcode in mainland GB. Then, for each choice set, the probability
of each station being chosen could be calculated. The unit postcode represents the spatial
level at which resident population will be weighted, both by the distance- or time-based
decay function and the calculated choice probabilities, before being allocated to each station
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in the model. The next three sections describe the preparation of the postcode data; the

choice set creation process; and then the generation of probability tables.

7.5.1 Postcode data preparation

Only those postcodes that had resident population associated with them at the 2011 census
were of interest. These postcodes, along with the population data, were obtained in CSV for-
mat from the NOMIS web service for England and Wales (Nomis, 2013) and from ‘Scotland’s
Census’ website for Scotland (Scotland’s Census, 2013). The CSV files were imported into R,

merged, and then written to a database table.

In the Scottish data some postcodes appeared twice with either an A or ‘B’ appended to
the the postcode, for example: AB12 3LPA and ‘AB12 3LPB’. Different population totals
were associated with the two variants, suggesting that this might be connected with splitting
postcode populations between census output areas, although no advisory information was
provided with the dataset. These duplicated postcodes were identified using a regular
expression matched against the last three characters of the postcode. In a valid unit postcode
these should always be numeric, alpha, alpha. In any instances where this was not the case,
one character from the right was removed from the postcode. This corrected 416 records,
but left duplicated postcodes in the table with different population counts. To resolve this a
new table was created using a select query that grouped records by postcode and summed

the population field.

As several explanatory variables used in both the station choice and trip end models relate
to the road network (for example station access distance), it was necessary to remove any
postcodes that were isolated from the mainland road network. This included postcodes
located on any island not connected by road to the mainland, and a few very remote
postcodes in Scotland that are not connected to the public road network (for example, those
only accessible via forest track®). Where possible postcode sectors unique to an island were
identified using an interactive postcode district web map’, which enabled all postcodes within
those sectors to be readily removed. In other cases they were identified on an individual

basis by visualising the postcode centroids in QGIS.

7.5.2 Deriving the choice sets

Initially it was intended to identify the ten nearest stations to each GB postcode using the
same method adopted during development of the station choice models, as described in
Section 6.3. However, while identifying the nearest 30 stations for each postcode by Euclidean

distance would not be problematic, obtaining the actual distance to each of these stations in

5These were identified during the process of locating a postcode centroid to its nearest road segment.
’see https://www.xyzmaps . com/maps/free-maps.


https://www.xyzmaps.com/maps/free-maps
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Code List: RoadFunctionValue

Code Description
Motorway IA multi-carriageway public road connecting important cities.
IA Road I& major road intended to provide large-scale transport links within or between areas.
B Road IA road intended to connect different areas, and to feed traffic between A roads and

smaller roads on the network.

Minor Road IA public road that provides interconnectivity to higher classified roads orleads to a
point of interest.

Local Road I& public road that provides access to land and/or houses, usually named with
addresses. Generally, not intended for through traffic.

Local Access Road IA road intended for the start or end of a journey, not intended for through traffic but
will be openly accessible.

Restricted Local |A road intended for the start or end of a journey, not intended for through traffic

lAccess Road and will have a restriction on who can use it.

Secondary Access I& road that provides alternate/secondary access to property or land not intended for

Road through traffic.

FIGURE 7.7: Road function codes within the Open Roads dataset. Note: Reprinted from 'OS
Open Roads: User guide and technical specification’, by Ordnance Survey (2017), p. 23.
Image reproduced with permission of the rights holder, Crown copyright.

order to correctly rank them by road distance would have required over 40 million queries to
the OTP API. To make this more manageable, it was planned to identify only the nearest 20
by Euclidean distance, and then carry out the API queries using multiple R clients running in
a cloud client-server environment. However, initial tests indicated that certain geographical
features, for example the River Thames and the Thames estuary, resulted in choice sets that
did not accurately reflect the nearest stations on the road network. An alternative solution
was therefore required that could directly identify the nearest x stations via the road network.
The preferred option was to use the pgRouting extension for the PostGIS/PostgreSQL spatial
database, in which the data was already held. However, as a suitable function to perform
this task using pgRouting was not available, an OD Cost Matrix analysis using the ArcGIS

Network Analyst extension was identified as the only viable option.

A network dataset was created in ArcGIS using the OS Open Roads dataset which was
downloaded in the ESRI Shapefile format and imported into a file geodatabase (Ordnance
Survey, 2016). The drive time of each network segment was assigned based on the identified
road function and, where applicable, whether the segment was single or dual carriageway
(See Figure 7.7 for the road functions defined in the Open Roads dataset, and Table 7.4 for
the speed specified for each).

An OD cost matrix analysis requires origins and destinations to be loaded and located onto
the nearest part of the road network. For this analysis the origins were the unit postcodes
obtained from the 2011 census (as described above), and the destinations were the stations
in operation prior to 20128, Certain stations were excluded from the analysis, and these
are summarised, along with the reason for their exclusion, in Table D.5 in Appendix D.

8The last station to open in 2011 was Buckshaw Parkway on 3 October 2011, midway during the 2011/12
financial year used by ORR to report annual station entries and exists — the dependent variable used in the trip
end models.
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Assumed speed (mph)

Road function Single carriageway Dual carriageway
Motorway 65
A Road 45 50
B Road 40 45
Minor Road 30
Local Road 25
Local Access Road 20
Restricted Local Access Road 20
Secondary Access Road 15

TABLE 7.4: Speeds applied to segments in the OS OpenRoads network dataset.

Predominantly this was because the station is not accessible to typical passengers, either
because it is located on private property or a considerable distance from the public road
network; or because the station does not offer any weekday service®. In addition, all stations
on the Isle of Wight were excluded, as both the rail and road network are isolated from the
mainland. Once all the origins and destinations had been loaded and located onto the road
network a series of OD cost matrix analyses were run to find the nearest 15 stations by time,
with distance also recorded®. In a small number of cases the analysis was unable to find any,
or a sufficient number, of stations. This was due to some streets being orphaned from the rest
of the road network. These issues were resolved by manually editing the network in ArcGIS
to connect the orphaned sections to the rest of the network with reference to online mapping
services, and then re-running the cost matrix analysis for the affected origins. The results of
each analysis were exported from ArcGIS in DBF format and subsequently imported into R
where they were merged into a single dataframe (of some 22 million records), processed,
and then written to a PostgreSQL table. This table contained the nearest 15 stations to
every postcode in GB, from which the choice set of the nearest 10 was selected. The same
procedure was followed to identify the nearest major station to each postcode by distance,

with the cost matrix destinations in this case consisting of all Category A, B and C1 stations.

7.5.3 Creating probability tables

Two probability tables were generated for the station choice component of the trip end
models, one containing the nearest 10 stations to each postcode by distance, and the second
additionally including the nearest major station to each postcode (if not already present).

The tables were created by selecting the choice set records from the nearest 15 station tables

“Many of these stations are served by so-called ‘parliamentary trains’, a bare minimum service to avoid
invoking the costly formal process of closing a station ("Why Do Some Stations", 2015).

19ArcGIS was unable to complete an OD cost matrix analysis with all the origins (1.45 million). The analysis
was therefore run in seven batches of approximately 200,000 origins.
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as required, and pulling in additional explanatory variables from the stations database table

using joins.

7.5.3.1 Calculating the accessibility term

The calculation of the accessibility term was discussed in Section 6.4.1.4, and the modification
of the weighting variable to enable it to be used in predictive models was outlined in Section
6.7.2. However, due to the size of the probability tables (in excess of 14 million records),
the scripts that were previously used to identify unique station pairs (in order to look-up the
distance between them) and perform the relatively complex calculation of the accessibility
term would have taken several days to complete. To resolve this a block of procedural
language (PL/pgSQL) code was written to generate the information directly using the
PostgreSQL database, thus eliminating the processing overhead of a scripting language. The
code used to identify the set of unique station pairs is shown in PostgreSQL code segment
B.3 in Appendix B. A total of 47,520 unique station pairs were identified, and the distance
between each of these pairs was obtained by querying the OTP API (specifying walk mode).
The code used to calculate the accessibility term for every record in the probability table is
shown in PostgreSQL code segment B.4 in Appendix B.

7.5.3.2 Generating probabilities

For each record in both probability tables, a field was populated with the exponentiated
measured utility by applying the appropriate combined station choice model depending on
choice set definition (CMB-TE19 and CMB-TE24 for nearest 10 stations and CMB-MN-TE12
for nearest 10 plus nearest major). Using a window function (with records partitioned by
postcode), another column was then populated with the sum of the measured utility for all
the alternatives in each choice set. Finally, a column was populated with the probability that
each station was chosen.

7.5.3.3 A railway station choice predictor application

To enable the station probabilities for particular postcodes to be easily interpreted, and allow
a sense-check of the performance of the predictive models across GB to be carried out, an
application was developed using Shiny, an R package for creating interactive web applications
(Chang et al., 2017). The user enters a postcode and selects the required station choice
model and the application then queries the appropriate probability table in a PostgreSQL
database and displays each station within that postcode’s choice set and their respective
choice probabilities. The application, which is hosted on a cloud server, can also generate a
choropleth map showing the probabilistic catchment for any station. Screenshots of the web

interface are shown in Figures 7.8 (probability table) and 7.9 (catchment map).
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Select model:

Combined (TE24)

Enter postcode:

B744PX

Predict station choice

Enter station CRS code:

Generate catchment map

Railway station choice predictor

Predictions Catchment map Model calibration results

Station choice predictions

The nearest station to B744PX is BUL and the nearest major station is BSW (by distance).

crscode station probability
BKT BLAKE STREET 034
FOK FOUR OAKS 025
BUL BUTLERS LANE 020
SuT SUTTON COLDFIELD 014
wyL WYLDE GREEN 0.03
CRD CHESTER ROAD 002
ERD ERDINGTON 001
SEN SHENSTONE 000
PRY PERRY BARR 0.00
HSD HAMSTEAD (BIRMINGHAM) 0.00

FIGURE 7.8: Interface of the station choice predictor web application showing the probability

table for a postcode.
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Generate catchment map

3 "7_ Railway station choice predictor

Predictions Catchmentmap  Model calioration results

Station catchment for HONITON (HON)
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It may take a few seconds for the map to render onice processing is complete. Catchment maps anly include pastcodes where the station probability is >= 5%

o

AN i

FIGURE 7.9: Interface of the station choice predictor web application showing the proba-

bilistic catchment for a station.
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7.5.3.4 Retrieving population totals

The population totals for each station in the calibration dataset were retrieved using SQL
queries that pulled data from the relevant probability table and the postcode table, and
applied probability and decay-function weightings on-the-fly. Example SQL queries using
both simple and probability-based catchment definitions are provided in Section B.5 in

Appendix B.

7.6 Trip end model results

The trip end models were estimated in R using the ‘lm’ function, and to enable comparisons
to be made, models were estimated using deterministic catchments (model form shown in
Equation 7.1) and probabilistic catchments (model form shown in Equation 7.2). The results
are summarised in Tables 7.5 and 7.6. Although the adjusted R? goodness of fit measure
is reported in the results tables, the AIC is considered to be a more appropriate in-sample
measure for comparing the predictive accuracy of models, as it seeks to estimate how well
a model will predict new or future data rather than how well it explains the current data
(Sober, 2002). The preferred model is considered to be the model with the lowest ‘headline’
AIC value, and the difference between the AIC value of each model and the best performing

model (known as the delta AIC) can be calculated as follows:
Ai(AIC) = AIC; — min(AIC). (7.5)

This raises an important question: how much confidence can the researcher have that a
model with a lower AIC value really is better than a model with a higher AIC value? And how
big does the difference need to be to confidently discard a model when a single predictive
model is being sought? These questions can be answered by calculating the Akaike weight of
each model, which is the ratio of the delta AIC to the sum of the delta AICs of all (K) models:

exp(—A;/2)
K‘ b
>, exp(—A/2)
k=1

wi(AIC) = (7.6)

so that > w;(AIC) = 1. w;(AIC) is then interpreted as the probability that model i is the best
of the models under consideration. Furthermore, by calculating the ratio of the w;(AIC) of

two models, known as the evidence ratio:

WmZ(AIC)

Wi (AIC) ’ (7’7)

it is possible to infer the extent to which model 2 is better than model 1, and, by expressing

the evidence ratio as a normalized probability, the probability that model 2 is the better of
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the two models!!:
Wp2(AIC)

Wmi (AIC) + WmZ(AIC) .

(7.8)

The AIC value, delta AIC and the AIC weight are reported for each model in the results tables.

Initial models were estimated to determine whether assigning each postcode to its nearest
station by time (models 1 to 3) or distance (models 4 to 6) resulted in better performing
models when using deterministic catchments; and to identify which travel time threshold
for workplace population (one, two, or three minutes'?) performed the best. The models
where postcodes were assigned by distance performed better than those where postcodes
were assigned by time (see Table 7.5). Model 4, using a one-minute threshold for workplace
population, was the preferred model, with the AIC weight indicating a > 99% probability
that this was the best of the six models.

Results from subsequent models (7-10) are summarised in Table 7.6, with model 4 included
for comparison purposes. In model 7 the postcode population was weighted using the
distance-based decay function described in Section 7.4.2.1. This function was found to
perform consistently better than the time-based decay function for both deterministic and
probabilistic catchments (results from models estimated using this function are not reported
here for reasons of brevity). Probabilistic station catchments were incorporated into models 8
to 10, with the postcode populations weighted by station probabilities derived using different
station choice models (see Table 6.20). Model 8 used station choice model CMB-TE19, model
9 used CMB-TE24 which contains the accessibility term, and model 10 used CMB-MN-TE12

which includes the nearest major station in the choice sets (but not the accessibility term).

All the models fit the data very well, with model 9 the best fitting model (adjusted R?> =
0.8506). Model 9 had the lowest AIC, and the AIC weights indicated an 80% probability
that this was the best of the five models. Model 10 had the next lowest AIC, with an 18%
probability of being the preferred model. While introducing the distance decay function
into model 7 reduced the AIC by 64 units compared with model 4, the largest reduction
in AIC (78 units) was observed between model 7 and model 8, with the incorporation of
probabilistic station catchments. Model 8 was then further improved by the addition of the
accessibility term in model 9. The difference in AIC between the best and worse performing
models (between model 4 and model 9) was 149.

A standardized residuals'® plot for model 9 is shown in Figure 7.10. The accuracy of the
prediction is shown on the y-axis, with the prediction becoming less accurate as the distance
from the zero line increases. Points above the line indicate that the prediction was too low,

and points below the line indicate that the prediction was too high. In general the residuals

"This discussion about the use of AIC in assessing the performance of predictive models, and the notation
used, is based largely on Wagenmakers and Farrell (2004).

12A four-minute threshold was also tested but for brevity these models, which performed worse than those
with the three-minute threshold, are not shown in the summary tables.

13Standardized residual = (observed — expected) + +/expected
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Model 1 Model 2 Model 3 Model 4 Model 5 Model 6

Population Population Population Population Population Population

assigned to assigned to assigned to assigned to assigned to assigned to

nearest nearest station nearest station nearest station nearest station nearest station

station (by (by time) (by time) (by distance) (by distance) (by distance)

time)
Variable B t Sig B t Sig B t Sig B t Sig B t Sig B t Sig
Intercept 2.74 15.66  *** 2.55 14.65 ¥ 2.32  13.24 ¥ 2.58 14.37 236 13.24 ¥ 2.14 1190
_:Quo?:mno:% 0.22  14.58  *** 0.21 13.73  *** 0.23  14.54  *** 0.23  15.06 0.23 14.52 0.24 14.99
In(daily train frequency) 1.43 50.78  *** 1.42  49.99  *** 1.43  49.41  *** 1.43  50.90 1.42  50.09 1.43 49.46  ***
In(dist. to Cat A-D station)  0.14 5.80 ¥ 0.16 6.67 ¥ 0.17 6.83 ¥ 0.15 6.20  ** 0.18 7.21 0.19 7.34  Ex
In(work pop. 1 min)? 0.09 12.77  *** 0.09 13.48
In(work pop. 2 mins)! 0.10 11.97  *** 0.11  13.02  ***
In(work pop. 3 mins)? 0.09 9.75  FH* 0.10  10.59
In(car park mwmnmm% 0.13  13.23  *** 0.13 12.97  *** 0.13  13.03  *** 0.13 1343 0.13 13.14 0.13  13.25
Electric services 0.20 4.61  FF* 0.19 4.42 el 0.19 4.20  FF* 0.20 4.61 ¥ 0.19 4.48  FH* 0.18 4.19 k¥
Travelcard boundary 0.31 3.23 ** 0.32 337 ** 0.31 3.23  ** 0.31 3.30 0.33 3.45 0.32 3.32
Terminus 0.89 10.17  *** 0.90 10.32  *** 0.94 10.63  *** 090 10.31 091 10.44 095 10.77
Adjusted R? 0.8366 0.8349 0.8307 0.8378 0.8368 0.8318
AIC 3924.5170 3942.7820 3988.2390 3911.7690 3922.7630 3976.2580
Delta AIC 12.7480 31.0130 76.4700 0.0000 10.9940 64.4890
Akaike weight 0.0017 0.0000 0.0000 0.9942 0.0041 0.0000

Notes :ow?mlmzm + 1) used due to presence of zero values

TABLE 7.5: Summary of trip-end model calibration. Models 1-8, no weighting applied to population.
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FIGURE 7.10: Standardised residuals plot for model 9.

are symmetrically distributed around zero, clustered toward the middle of the plot at lower
values on the y-axis, and therefore consistent with random error. However, there does appear
to be evidence of a systematic error at very low actual entries/exits (below eight on the
logarithmic scale, or below around 3,000 annual entries/exits). At these lower values, the
model systematically over-predicts, and the extent of over-prediction increases as the number
of entries/exits becomes smaller. This indicates that the model is unable to account for
unexpectedly low observed demand at some stations, given the predictor variables, and this
could result in the model substantially over-forecasting demand for some new stations, if

they were to share similar, but unknown, characteristics.

In Figure 7.11, the standardised residuals from model 9 have been plotted against the
catchment population (weighted by probability and distance decay). This shows that under-
and over-prediction becomes larger and more prevalent at low catchment populations. This
effect can be seen in more detail in Figure 7.12, which only includes stations with catchment
populations <= 5,000. The effect is particularly noticeable at catchment populations of
around 100 and below, suggesting that station demand forecasts generated using this model
should be treated with extra caution when the weighted catchment population is very low.
Some stations with very low catchment population may have particularly strong attraction
characteristics, such as a very large employer (for example, the station serving the Sellafield
nuclear facility) or a large sports/entertainment arena. Demand at these stations is likely to
be under-predicted by the model. Over-prediction when the catchment population is very low
may be due to the ‘fixed’ elements of the model. For example, train frequency will generate
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FIGURE 7.11: Standardised residuals against weighted population for model 9.
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FIGURE 7.12: Standardised residuals against weighted population (< 5,000) for model 9.

trips even with zero population in the station catchment. This problem has to some extent
been addressed by incorporating the probability-based catchments, as the weight attached to

service frequency has been reduced relative to catchment population.

7.6.1 Examining geographic variation in model performance

In order to assess the performance of the trip end model on a geographic basis and identify
any potential systematic bias at regional level, the standardised residual for each station
was plotted on a map of GB, as shown in Figure 7.13. In this map the radius of each point
is proportional to the size of the residual, although it should be noted that the points for
stations with very small residuals are not visible at this scale. Overall, the map shows that
under-prediction and over-prediction occurs in all regions of the country, and is present at a
range of magnitudes. This suggests that the model performs similarly across the country, with
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FIGURE 7.13: Standardised residuals (from model 9) for each station plotted on a map of

GB. The radius of each point is proportional to the size of the residual with positive residuals

(model under-prediction) shown in blue and negative residuals (model over-prediction)
shown in red. The legend includes radii for example residual values.
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no obvious regions where the model systematically under- or over- predicts station demand,
and no regions where the standardised residuals appear systematically larger than in others.
There is perhaps a tendency for under-prediction to dominate in the Greater London area.
This would be expected given that there is no realistic alternative to public transport modes
for travelling to/from central London and there is no variable that captures this additional

generation effect within the trip end model.

The three stations with a standardised residual outside of the range +4 are identified on
the map. These are Sellafield, Doleham and New Clee. As previously mentioned, Sellafield
is an example of a station with a very low weighted catchment population (51) but a high
attraction factor due to the nearby nuclear facility. The centroid for the work population
associated with this facility, some 12,000, fell outside the one-minute drive time threshold,
exacerbating the degree of under-prediction. Doleham station also has a very low weighted
catchment population (49), but is reported to have been very popular with weekend leisure
travellers and walkers. A reduction in services appears to have caused a substantial fall
in passengers at this station in recent years, with the number of entries/exits falling from
38,666 in 2011/12 (the calibration year) to 4,768 in 2016/17 — much closer to the model
prediction for this station of 1,494. New Clee station is in a suburb of Grimsby and the
model has substantially over-predicted demand for this station. It is a request-only stop
with limited services and a small probability weighted catchment population of 520 (which
reflects competition with nearby stations with better service provision). It is also likely that
strong competition from a frequent bus service in this urban area has further suppressed
demand at this station. The trip end model is not sensitive to competition from other modes,
an issue discussed in the next chapter which addresses the application and appraisal of the
model.

7.6.2 Comparison of parameter estimates

The parameter estimates for models 7 and 9 are compared in Figure 7.14, along with
those from the model by Blainey (2017) which used census output areas as the zonal unit
and was calibrated on English and Welsh stations only. Considering models 7 and 9, it is
apparent that as the catchment definition is refined, the population parameter becomes larger
and the daily frequency and terminus dummy parameters become smaller. The weighting
attached to population is greatest in model 9, while the daily frequency and terminus dummy
parameters are the smallest in this model. Wardman and Whelan (1999) note the importance
of correctly specifying station catchments to avoid generation and attraction effects being
falsely attributed to other variables, such as service levels. These results suggest that too
much weight is being given to station service quality and characteristics in model 7, due to
inadequacies in the catchment definition. It appears that model 9 can better account for
differences in station usage that are explained by station catchments and their generation

potential, and as a consequence this model should be more robust and transferable. It is also
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In(dist. to Cat A-D station)

In(population)

In(daily frequency)
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Travelcard boundary (y/n)

Terminus station (y/n)

:
0.0 05 1.0
Coefficient

FIGURE 7.14: Comparison of coefficients (with 95% and 99% confidence intervals) estimated
by the Blainey (2017) trip end model with OAs as zonal unit (deterministic), model 7
(deterministic), and model 9 (probabilistic).

interesting to note that in the Blainey (2017) model the population parameter is substantially
smaller than in model 7, suggesting that the use of the higher spatial resolution zonal unit
(postcode rather than census output area) has in itself improved the representation of the

station catchment.

7.6.3 Assessing model predictive accuracy

To assess the predictive accuracy of model 9 a repeated k-fold cross-validation was carried
using the CV1m() function from the R DAAG package (Maindonald & Braun, 2015). The
predictive accuracy is expressed as the average mean squared error (MSE) of all the folds
(see Section 6.7.4 for an explanation of the k-fold cross-validation technique). A 10-fold
cross-validation was repeated ten times and the results for each fold and each repeat are
shown in Table 7.7. The average estimate across all ten repeats was 0.478, representing
a very small increase compared to the internal MSE of 0.473 for model 9 (see Table 7.6),
suggesting that the model’s predictive validity will hold when applied to new data. There
is only a small variance in the cross-validation estimate across the repeats (the maximum
difference is 0.002), indicating that the model has high stability. The results from the first
repeat are plotted in Figure 7.15, where the points represent the dependent variable for each

station (In(entries/exists)) and the colours indicate the fold that each station was assigned
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to. The lines join the cross-validation predicted values for each fold4. There is very close
correspondence in the plotted lines for each fold, giving confidence that the model is stable

and would be expected to perform consistently on new data.

MSE of each fold
Repeat 1 2 3 4 5 6 7 8 9 10 cv
(mean)

1 0.568 0.374 0.434 0.572 0.506 0.473 0.414 0369 0586 0.490 0.478
2 0.442 0.631 0.434 0.435 0.606 0.490 0.380 0.485 0.476 0.401 0.478
3 0.460 0.547 0.549 0.439 0.536 0.451 0.452 0.426 0.468 0.453 0.478
4 0.516 0.496 0.453 0.484 0.612 0.451 0.435 0.439 0403 0.481 0477
5 0.378 0.467 0.437 0.545 0.588 0.465 0.441 0.432 0.543 0.488 0.478
6 0.402 0.540 0.475 0.508 0.520 0.362 0.413 0.437 0.528 0.596 0.478
7 0.549 0.528 0.480 0.525 0.475 0.502 0.462 0.349 0.468 0.453 0.479
8 0.536 0.519 0.457 0.456 0.550 0.385 0.439 0466 0.429 0.550 0.479
9 0.448 0.532 0.538 0.410 0.426 0476 0.473 0.489 0.374 0.623 0.479
10 0.483 0.411 0.503 0.422 0.657 0.457 0.507 0.504 0.426 0.413 0.478

Average of all repeats  0.478

TABLE 7.7: Summary of the mean squared error (MSE) for 10-fold cross validation of trip
end model 9, repeated 10 times.
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FIGURE 7.15: Plot of 10-fold cross validation completed for trip end model 9 (first repeat).
The points represent the dependent variable for each station and the colour indicates the
fold it was assigned to. The lines join the cross validation predicted values for each fold.

14As these values are not a linear function of corresponding overall predicted values the lines are approximate
(Maindonald & Braun, 2015).
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7.7 Conclusions

This chapter has described the development of national trip end models for local railway
stations in Great Britain, which enhance models developed in earlier research in three key
respects: by incorporating probabilistic station catchments; adopting zonal units of a higher
spatial resolution; and extending the geographical scope to include stations in Scotland. A
general model form has been proposed that allows trips at a station to be generated from
any zone which has that station in its choice set, with the generation potential of the zone’s
population dependent upon the probability of the station being chosen and the distance of
the zone from the station. Probability tables were generated which contained a choice set
of ten'® stations for every postcode in mainland GB, and the associated choice probabilities
were calculated based on several estimated station choice models. Use was made of database
queries and novel procedural code to enable efficient data processing and generation of model
variables. A web application was developed to aid the interpretation of choice predictions

for postcodes across GB.

An analysis of revealed preference survey data established that a power distance decay
function (slope —1.5211) or an exponential time decay function (slope —.2432) applied to
postcodes located more than 750 m or two minutes respectively from the chosen station
best fit the observed trip data. For comparative purposes, models were calibrated using
both deterministic and probabilistic station catchments. Initial model runs established that
assigning each postcode to its nearest station by distance, rather than time, produced the
best performing models with deterministic catchments; and a one-minute uncongested drive
time for workplace population was found to be the optimum threshold. The power distance

decay function performed consistently better than the exponential time decay function.

The models with probabilistic catchments performed better, in terms of R? and AIC, than those
with deterministic catchments. The best model overall, model 9, was based on probabilities
derived using the station choice model with the accessibility term included. Greater weight
was given to the population variable in the models with probabilistic catchments, and reduced
weight was given to variables related to station services and characteristics. This suggests
that the more realistic representation of the catchment in these models, enables differences
in number of trips to be better explained. As a consequence, these models should be more
transferable and better suited for use as a national predictive model. The models developed
here are the first to successfully incorporate probabilistic station catchments into a trip end
model, and represent the only example of a national-scale trip end model that has defined
the zonal unit at such a high spatial resolution. Furthermore, it is the first time that a trip
end model has been calibrated using a dataset of this size and geographic scope, in that it

incorporates nearly every local station in England, Wales and Scotland.

15For the probability table where the choice set includes the nearest major station, some choice sets will contain
11 alternatives.
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While the in-sample model performance measures suggest that the enhanced models should
perform better at predicting demand for new local stations, it is important that they are
tested under real-world scenarios. The next chapter introduces a methodology that has
been developed to generate the station choice and trip end model inputs under the changed
circumstances that result from a proposed new station or new line, and then goes on to
describe two case studies where the methodology has been applied to forecast demand for

several recently opened stations and a newly constructed line.






Chapter 8

Model application and appraisal

8.1 Introduction

To investigate the predictive performance of the integrated trip end and station choice model
described in the previous chapter, and to assess whether probabilistic catchments can produce
more accurate estimates of station demand, the calibrated models were used to forecast
demand at several recently opened stations. This chapter begins by considering how the
integrated model would be applied in the context of the typical appraisal process used to
assess new local rail schemes (Section 8.2). It then describes the methodology that was
developed to generate the station choice and trip end model inputs under the changed
circumstances that result from a new station or new line being introduced (Section 8.3). Two
case studies where this methodology was applied are then presented. The first considers three
individual stations that have opened since the calibration base year of 2011/12 (Section 8.5);
and the second relates to a railway line that opened in 2015, consisting of seven new stations
(Section 8.6). A proposed methodology to forecast abstraction of demand from existing
stations is then outlined, and an example application relating to a possible new station in
north-east Wales is presented (Section 8.7). The chapter then describes how the integrated
station choice and trip end models, along with the forecasting methodologies, have been
applied in a real-world assessment of 12 potential new railway stations sites carried out on
behalf of the Welsh Government (Section 8.9). The chapter then closes by summarising the
work completed and drawing some conclusions (Section 8.10).

8.2 Model application in the context of the scheme appraisal

process

The integrated trip end and station choice model that has been developed is intended to be

used as part of the appraisal process of local rail schemes for new stations or new lines, or
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Baselining

Gather evidence
(both demand and supply)
on current position of the area under
examination

v

Drivers of Change

Identify what is likely to happen in the area
over next 20-30 years (e.g. population and
employment changes) and assess impact of
these on current challenges facing the area

Demand Forecasting (Stage 1)

v

Problems and Issues (Challenges)

Recognise the need for action and define the
problems to be solved

v

Objectives

Define the objectives in terms of key
challenges facing the area

v

Option Development

Compile a long list of options to address the
challenges facing the area

v

Option Refinement

Shortlist the options by means of a high level
strategic appraisal

Carry out high level demand forecasting to
estimate trends in travel demand over a 20-
30 year period (possible for both multi-modal

transport models and rail industry models)

Demand Forecasting (Stage 2)

v

Preferred Option(s)

Determine preferred option(s) and
carry out detailed assessment of preferred
option(s)

A 4

Carry out high level assessment to
understand what impact options have on
achievement of objectives

Demand Forecasting (Stages 3)

v

Preferred Option - Prioritisation for
Fundina

Confirm preferred option for prioritisation for
funding to the extent that it can be accepted
(or rejected) as a preferred option

v

Business Case

Develop detailed business case for funding
approvals

A 4

Carry out more detailed demand forecasting
to establish benefits and financial viability of
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Demand Forecasting (Stage 4)

Use and refine information from stage 3 to
satisfy any business case requirements

FIGURE 8.1: The process for a local rail scheme appraisal showing stages where demand

forecasting should be carried out. Note: Reprinted from ‘Guidance note on passenger

demand forecasting for third party funded local rail schemes’, by Department for Transport,
2011, p. 4. Reproduced under Open Government Licence v3.0.
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where a non-incremental change to services at an existing station or stations is proposed.
The generic components of the planning process of such a scheme, identifying the four
stages that require a demand forecasting input, are shown in Figure 8.1 (Department for
Transport, 2011). The integrated model is relevant to stages 2 — 4. These follow option
development, once it has been established that rail is a feasible option to meet the scheme’s
objectives. There may be an early assessment of different options for new railway stations
and a sifting process at stage 2, and the headline entries/exits forecast for each option may
suffice at this stage, potentially alongside an analysis of abstraction from existing stations.
For subsequent stages the entries/exits forecast would form a key input to the benefit-cost
analysis, enabling the change in train operator revenue to be estimated. Crucially, the ability
to generate probabilistic station catchments that can capture competition between stations
should enable an estimate of abstraction from existing stations to be made (in contrast to
current best practice discussed in Section 2.4). This would allow the net entries and exits
resulting from a proposed station to be calculated as follows:

Vi =V Y LAV, (8.1)
reRr
where V,,, is the forecast net entries and exits, V is forecast entries and exits for station s, R
is the set of r stations at risk of abstraction by proposed station s, and AV, is the estimated
change in entries and exits at station r as a result of station s. This estimate of the net
entries and exits resulting from the proposed station would be converted into train operating
company revenue as part of the benefit-cost analysis.

In terms of the conventional business case framework of ‘do nothing’, ‘do minimal’, ‘do
something’, the trip end model would provide a single input to the benefit-cost analysis of
the ‘do something’ option. A range of other factors would need to be taken into account
in quantifying the ‘do something’ scenario, but these are beyond the scope of this research
project. The aim here is to improve this one key element. It should be noted that the ‘do
nothing’ option must incorporate any assumptions that are made as part of the ‘do something’
option that remain valid, such as background growth in housing, jobs and rail passenger
demand.

Having set out how the integrated trip end and station choice model is intended to be applied
in assessing local rail schemes, the chapter will now go on to consider how well the model
performs in the selected case studies and describe the development and assessment of a

methodology for estimating abstraction from existing stations.

8.3 Methodology

The major consideration when seeking a workable methodology to apply the calibrated

models is the process required to generate the station choice and trip end model inputs under
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the changed circumstances that result from a new station being introduced. The previous
chapter described the procedure used to define a set of ten alternative stations for each unit
postcode in mainland GB, from which the choice probability of each station in each choice
set was calculated and probabilistic catchments then derived. However, as these catchments
were used to calibrate trip end models for station entries/exits in 2011/12, only stations
which were open at that time were included in the universal set of stations from which
the nearest ten were selected. It is therefore necessary to redefine the set of alternative
stations available at each unit postcode when the models are applied, so that any recently
opened stations, as well as the proposed new station(s), appear as available choices when
appropriate. Given the computer processing overhead involved in creating the choice sets,
generating predictor variables and calculating choice probabilities, it would not be practical
to regenerate the nearest 10 stations for every postcode in mainland GB each time a new

station needed to be modelled.

Analysis of the combined passenger survey dataset identified that only a very small number of
reported station access journeys (0.83%) exceed 60 minutes, irrespective of the chosen access
mode, as shown in Figure 8.2. This analysis excludes walk mode as any access journeys on
foot > 60 minutes were previously removed from the dataset during trip validation (see
Section 4.5.1.1). It was therefore decided that for any proposed new station the ‘area of
interest’ could be justifiably limited to those unit postcodes within 60 minutes’ drive time, as

no meaningful demand would be generated from postcodes beyond this threshold.
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FIGURE 8.2: Histogram of access time to chosen station by reported mode (excluding walk

mode) with kernel density plot.

Using this approach, the nearest 10 stations, selected from the universal set that now includes

the proposed new station, to each of these postcodes can be readily generated. The proposed
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station will not be present in the choice set of every postcode that is within the 60-minute
threshold, as it will not always be amongst the nearest 10. Any postcode where the proposed
station is not in the choice set can be discarded, as it will have no influence on the catchment
definition. This further reduces the computing overhead involved in populating the probability

database table and deriving the predictor variables.

The predictor variables required for the trip end and station choice model components
will either be provided by the scheme proposer (for example, service frequency or parking
spaces) or can be readily generated (for example, workplace population within one-minute
drive-time). Calculating the accessibility term for each station in each choice set is a more
time-consuming process, as it is necessary to generate all possible station pairs across the
choice sets, eliminate any station pairs that are already known about (from the calibration
exercise), obtain the distance between the remaining stations pairs using an OTP API lookup,
and finally append them to the station-pairs database table.

Once the predictor variables for both model components have been obtained, a probability
table can be created for the proposed station and the required trip end model run, with the
weighted population input generated on-the-fly from the database as previously described
in Section 7.5.3.4. The key steps involved in the proposed methodology are summarised in

Figure 8.3.

In the case of a proposed railway line that consists of several new stations, each station
catchment has the potential to be influenced by interaction with the other new stations. All
the stations must therefore be modelled concurrently. In this situation the methodology can

be streamlined using the following approach:

* When the 60-minute drive-time service area is generated for each station on the new
line, the option to merge the polygons is selected. This creates a single polygon that

encompasses the extent of all the individual service areas.

* All postcode centroids within the merged polygon are selected and the nearest 10

stations to each are obtained using an origin-destination matrix analysis.

* In R, any postcode where none of the proposed stations are present in its choice set is
removed.

* A single probability table is then created and populated.

* When the trip end model is run to generate the demand forecast for a specific station on
the new line, the database query that pulls the weighted population from the probability

table only considers those postcodes that are within 60 minutes of that specific station.

This approach avoids creating a separate probability table for each station, and eliminates
the duplication of postcodes, that are within 60 minutes of more than one station, across

multiple tables.
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FIGURE 8.3: Proposed methodology for generating a demand forecast for a new station.

8.4 Demand forecast considerations

As the source of the postcode population data is the 2011 census, the number of station

entries/exits in 2011/12 was used as the dependent variable in the trip end models. To

account for growth in rail travel over recent years, it is possible to apply an uplift to the

demand forecasts. In the case studies that follow, this was calculated separately for stations

in Scotland and Wales. For stations located in Wales, the percentage change in the total

number of entries/exits for Welsh stations in the calibration dataset between 2011/12 and
2015/16, calculated as 10.48%, was applied as the uplift. In the case of Scottish stations,

the equivalent figure of 14.3% was used. This adjusted forecast should be treated with some

caution, as part of the growth in journeys will have been driven by population growth over
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this period. This population growth will depend on a range of regional and local factors,
and will impact individual stations differently. As this aggregate change may not reflect the
circumstances at the stations considered in the case studies, demand forecasts before and
after applying the uplift are reported. For reasons of brevity the uplift is only applied to

forecasts made using trip end model 9 (see Table 7.6).

When comparing forecast demand with actual demand it should be noted that the trip end
models have been calibrated using stations that, with a few exceptions, are well-established
and have been open for many years. There is evidence to suggest that, discounting for any
general growth in rail journeys that might be occurring, it can take several years for a new
station to reach its potential, as individuals adjust their behaviour over time. This might be
through delayed mode change for existing trips (e.g. switching from car or bus), generation of
additional trips as awareness grows of faster and less stressful journeys for work or shopping,
or even by influencing decisions on where people live or work. Preston and Dargay (2005)
found that this period may last for up to five years, while analysis by Blainey (2009) suggests
that demand at new stations might increase relative to other stations in the surrounding
area for up to six years, with this difference becoming smaller over time. However, Blainey
also found a large variability in the effect between stations, and consequently a weak linear
relationship between time (in years) and the growth difference (R? of 0.088). It is therefore
difficult to predict the nature of this effect at a specific station with any confidence, although
it should be borne in mind when comparing forecast demand with actual, especially in the

initial years.

8.4.1 Catchment maps

Deterministic and probabilistic catchment maps have been produced for the case study
stations, using postcode polygons from the OS ‘Code-Point with polygons’ dataset. These
maps use a choropleth to indicate the probability that the proposed station will be chosen for
each postcode within the station’s catchment. It should be noted that this only indicates the
probability of a station being chosen by someone located in a specific postcode if they were to
choose to travel by rail; it does not indicate the likelihood of someone choosing to travel by
rail over other modes. To aid clarity, a transparent fill is applied to those postcodes where the
probability of the station being chosen is < 1%. As only those postcodes included in the 2011
census population releases have been used in this work, gaps will occur in the catchment
maps where corresponding data is not available for a particular postcode polygon!. It should

also be noted that the scale of the catchment maps varies by station.

!These might be postcodes that have been introduced since 2011, or postcodes that were not present in
the 2011 census resident population dataset as no resident population was assigned to them (e.g. a large user
(business) postcode).
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8.5 Case study A — new individual stations

The methodology was initially applied to forecast demand for three new stations that opened
in 2012 (Fishguard & Goodwick) and 2013 (Conon Bridge and Energlyn & Churchill Park).
The predictor variables entered into the trip end models for these stations, apart from
weighted population, are summarised in Table 8.1. Demand forecasts were calculated based
on simple (deterministic) station catchments (using model 7 in Table 7.6) and probabilistic
stations catchments (using models 8 and 9 in Table 7.6). The demand forecasts obtained
using the three trip end models are presented in Table 8.2, along with the weighted population
input for each model, and the actual station usage data for 2015/16 obtained from ORR (the
latest available at time of writing). The forecasts before and after applying the growth uplift

are reported.

Station work Daily ser- Car park Nearest Cat Terminus
pop. (1 vice freq.  spaces A-D station station
min) (km) 0/1)
Conon Bridge 924 24 0 19.65 0
Energlyn & Churchill 0 56 18 1.97 0
Fishguard & Goodwick 876 14 0 24.60 0

TABLE 8.1: Predictor variables for stations (Case Study A).

8.5.1 Appraisal

8.5.1.1 Conon Bridge

All three models over-forecast demand at Conon Bridge, by around 60% before the growth
uplift, with the probabilistic catchment models performing slightly worse than the determin-
istic model. However, all the models performed better than the reported original project
forecast of 36,000 trips (Alderson & McDonald, 2017), which is more than double actual
station usage in 2015/16. The deterministic and probabilistic catchments for Conon Bridge
are shown in Figure 8.4. The probabilistic catchment indicates that Dingwall and Muir of
Ord stations will attract passengers from many of the postcodes that are actually closer to
Conon Bridge, especially those not in the immediate vicinity of the station. This is most likely
due to the availability of car parking at Dingwall (12 spaces) and Muir of Ord (34 spaces),
when there is no official station parking provision at Conon Bridge. There is also a slightly
higher service frequency at these stations (one or two extra trains per day) and Dingwall is

staffed on a part-time basis.

Conon Bridge is somewhat unusual as the impetus for building the station appears to have
been to alleviate the effect of disruption to the road network during two five-month periods
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FIGURE 8.4: Deterministic and probabilistic catchments for Conon Bridge (CBD).

in 2013 and 2014 while the Kessock Bridge was repaired and resurfaced (BBC, 2012). As
a result, station usage has actually fallen from 18,114 in 2013/14 (the first full reporting
year) to 15,276 in 2015/16. Local media reports have highlighted service reliability issues
at this station, with trains that are running late on this single-track line not stopping at
Conon Bridge as scheduled, in order to make up time (North Star, 2014). It has also been
suggested that passengers are preferring to drive to Dingwall station, where trains must stop
due to signalling reasons, or may have abandoned rail altogether (The Inverness Courier,
2015). Given the competition with Dingwall identified by the probabilistic catchment, it is
possible that some of the forecast demand at Conon Bridge has been drawn away or failed to
materialise, as a result of these performance issues. This may go some way to explaining
why actual demand is below forecast for this station.

8.5.1.2 Energlyn and Churchill Park

All three models produced a fairly accurate forecast for Energlyn & Churchill Park, within
+2% of actual trips before the growth uplift was applied. When adjusted for growth, the
probabilistic model over-predicts actual demand by 12.2%. Actual demand grew by 6.94%
between 2014/15 and 2015/16 at this station, which is substantially above the increase
for the Welsh stations as a whole in the calibration dataset (1.82%). This may indicate the
demand at this station is currently experiencing demand build-up, as discussed in Section 8.4,
and if this effect was to continue into the third full reporting year (2016/17) and beyond,
actual demand may prove to be closer to the model forecast than current data suggests. The
deterministic and probabilistic catchments for Energlyn & Churchill Park are shown in Figure

8.5. The probabilistic catchment indicates that nearby stations will attract passengers from
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many of the postcodes that are actually closer to Energlyn and Churchill Park, especially
those not in the immediate vicinity of the station. This would be expected, as Aber, Caerphilly
and Llanbradach stations all have substantially higher service frequency patterns (almost
double the number of daily services), and Aber and Caerphilly have larger car parks, with

128 and 222 spaces respectively, compared to only 18 spaces at Energlyn & Churchill Park.
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FIGURE 8.5: Deterministic and probabilistic catchments for Energlyn & Churchill Park (ECP).

8.5.1.3 Fishguard and Goodwick

Before applying the growth uplift, the probabilistic models under-forecast demand by 18%
at Fishguard & Goodwick, although this represents a 10 percentage-point adjustment (in the
desired direction) compared to the deterministic catchment model. Once the growth uplift is
applied, the forecast is within 10% of actual demand. It is also worth noting that this station
has been open longer than the other two, almost four full reporting years, and is likely to

have reached its ‘steady-state’ demand.

The deterministic and probabilistic catchments for Fishguard & Goodwick are shown in
Figure 8.6. The geographic placement of Fishguard Harbour station results in virtually all the
postcodes being assigned to Fishguard and Goodwick station in the deterministic catchment.
However, the probabilistic catchment indicates the likelihood of competition with Fishguard
Harbour station in the area surrounding the two stations; as well as competition with more

distant stations on the margins of the catchment.
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FIGURE 8.6: Deterministic and probabilistic catchments for Fishguard & Goodwick (FGW).

8.6 Case study B — a new railway line

The methodology was next applied to forecast demand for the seven stations that were built
as part of the new Borders Railway in Scotland, which opened in September 2015 and runs
from Edinburgh Waverley to Tweedbank (see Figure 8.7 (Wikipedia contributors, 2018)).
The line passes through two pre-existing stations serving the Edinburgh suburbs of Brunstane
and Newcraighall, and then the seven new stations, comprising four in Midlothian (Shawfair,
Eskbank, Newtongrange, and Gorebridge) and three in the Scottish Borders (Stow, Galashiels
and Tweedbank).

Station Work Daily Car park  Nearest Terminus Cat.  Ticket Buses CCTV
pop. (1 service spaces Cat A-D station F mach.
min) freq. station
Tweedbank 1120 66 235 54.89 1 1 1 1 1
Galashiels 3746 66 0 50.62 0 1 1 1 1
Stow 718 47 33 39.08 0 1 1 1 1
Gorebridge 2330 66 73 16.58 0 1 1 1 1
Newtongrange 1965 66 56 13.17 0 1 1 1 1
Eskbank 819 66 248 11.39 0 1 1 1 1
Shawfair 0 66 59 10.16 0 1 1 1 1

TABLE 8.3: Predictor variables for Borders Railway (new stations only; trip-end and/or
station choice models).

The predictor variables entered into the trip end and/or station choice models for each
of these stations, apart from weighted population, are summarised in Table 8.3. Demand
forecasts were calculated based on simple (deterministic) station catchments (using model 7
in Table 7.6) and probabilistic station catchments (using models 8 and 9 in Table 7.6). The
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FIGURE 8.7: The Borders Railway. Note: Reprinted from ‘Borders Railway’ by Wikipedia
Contributors, 2018, January 12. ©User:Pechristener, Wikimedia Commons, CC-BY-SA-2.0.

demand forecasts obtained using the three trip end models are presented in Table 8.4, along
with the weighted population input for each model, station usage data for the first 12 months
and for the 2016/17 reporting year?, and the business case forecast for the first 12 months
which was produced in 2012. Demand forecasts with the growth uplift to 2015/16 applied
are shown in Table 8.5. These two tables are summarised using bar charts in Figures 8.8 and
8.9.

8.6.1 Appraisal

The forecasts before applying the growth uplift, show that model 9 (incorporating probabilis-
tic catchments) has performed reasonably well across all seven stations and has, with the
exception of Galashiels, produced more accurate forecasts than model 7 (using deterministic
catchments). The forecasts for three of the stations are within 20% of actual trips, with
Tweedbank and Eskbank +9%, and Stow +17%. This is substantially better than the perfor-
mance of model 7, where the forecasts for these three stations are +70%, +37% and +46%
respectively. Looking at the aggregate prediction for the seven stations, model 9 predicts
a total of 1.50 million trips, slightly higher (+10%) than the 1.36 million actual trips in
2016/17. This compares favourably with the 48% over-prediction obtained using model 7.
Despite some shortcomings, such as the large over-forecasts for Gorebridge and Shawfair, it
is particularly encouraging that model 9 has performed substantially better than the business
case forecast. This is most apparent for the three Scottish Borders stations (Tweedbank,
Galashiels and Stow) where the business case projections severely under-estimated demand.

2At the time of writing the official station usage data for the 2016/17 reporting year had not been released by
ORR. The trip data was read from graphs provided in the ‘Borders Railway Year 1 Evaluation’ report (Transport
Scotland, 2017) and the figures used are therefore only indicative of actual values.
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Weighted catchment pop- Actual trips Trip forecasts
ulation
2011/12 base year
Station Distance CMB- CMB- First year Lennon Business % Simple % Probability- % Probability- %
decay TE19 TE24 from data’ case fore- diff catchment diff based diff based diff
choice  choice opening  2016/17 cast from from catchment from catchment from
model  model 16/17 16/17 (CMB- 16/17 (CMB- 16/17
TE19) TE24)
Tweedbank 2476 2426 2420 337864 474000 43242 91 806146 70 520157 10 515919 9
Galashiels 4737 4520 4527 201666 342000 46862 -86 200381 -41 157217 -54 158062 -54
Stow 700 697 699 48282 66000 11686 -82 96263 46 77841 18 77351 17
Gorebridge 3189 2856 2874 74891 93000 180038 94 254489 174 226058 143 226256 143
Newtongrange 3538 2612 2604 96735 137000 105836 -23 239277 75 209621 53 209019 53
Eskbank 5230 2873 2830 133121 228000 261050 14 312784 37 250757 10 248872 9
Shawfair 1323 320 324 16853 21000 123720 489 106627 408 65467 212 64979 209
Totals 909412 1361000 772434 -43 2015967 48 1507118 11 1500457 10

Notes: 'Trip data read from graphs provided in the Borders Railway Year 1 Evaluation report, therefore figures are only indicative of actual values

TABLE 8.4: Demand forecast for Borders Railway (new stations only) and comparison with actual trip data in 2016/17.
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Total trips (‘000s)

Trip forecasts

Adjusted for growth to 15/16

Station Lennon TEmodel7 % TE model 8 % TE model 9 %
data (simple diff (probabilistic diff (probabilistic diff
2016/17 catchment) from catchment from catchment from
16/17 (CMB-TE19)) 16/17 (CMB-TE24)) 16/17
Tweedbank 474000 921747 94 594748 25 589902 24
Galashiels 342000 229116 -33 179762 -47 180728 -47
Stow 66000 110067 67 89003 35 88443 34
Gorebridge 93000 290983 213 258475 178 258701 178
Newtongrange 137000 273590 100 239681 75 238992 74
Eskbank 228000 357637 57 286715 26 284560 25
Shawfair 21000 121917 481 74855 256 74297 254
Totals 1361000 2305057 69 1723239 27 1715622 26

TABLE 8.5: Demand forecast for Borders Railway with growth uplift of 14.3% applied and
comparison with actual trip data in 2016/17.
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FIGURE 8.8: Comparison of demand forecasts (without growth uplift) and actual trips in
2016/17 for the new stations on the Borders Railway.
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FIGURE 8.9: Comparison of demand forecasts (with growth uplift applied) and actual trips
in 2016/17 for the new stations on the Borders Railway.

The impact of applying the growth uplift, with the exception of reducing the under-prediction
at Galashiels, has been to raise the forecasts and so increase the difference from actual trips in
2016/17. However, it must be borne in mind that these stations are likely to be in the initial
demand build-up stage. This is supported by the large difference in the number of trips in
the first 12 months of operation (from September 2015) compared to the first full reporting
year (from April 2016). There were 50% more trips in the latter period, indicating that
demand build-up is taking place. If this continues into subsequent years then the ‘steady-state’

demand may be much closer to that predicted by the models.

The seven stations will now be considered on an individual or group basis, and some particular
local circumstances that might have impacted the predictive performance of the models will
be examined. In addition, the discussion will draw on information contained in a year-one
evaluation of the new line carried out by Transport Scotland, which was informed by a
survey of users and non-users of the line (consisting of 1,112 and 227 responses respectively)
(Transport Scotland, 2017).

8.6.1.1 Tweedbank

Model 9 has noticeably corrected the large over-prediction for Tweedbank station produced
by model 7, reducing it from +70% to +9% of actual trips (without growth uplift). Once the
growth uplift has been applied, model 7 produces a forecast almost double actual demand
(+94%), while model 9’s forecast is +24%. In addition to the potential for further demand
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FIGURE 8.10: Deterministic and probabilistic catchments for Tweedbank (TWB).

build-up already mentioned above, there is some evidence that demand is being suppressed at
Tweedbank, and this might also explain the apparent over-forecast. The first-year evaluation
report (Transport Scotland, 2017) highlights capacity issues at the station car park, which
required a temporary overflow car park to be provided, and survey responses indicate that
some users, especially those from the Scottish Borders, have been discouraged from using
the service due to reliability and capacity issues (these problems have been widely reported
in the media, for example see Edinburgh Evening News (2015) and The Scotsman (2016)).

The deterministic and probabilistic catchments for Tweedbank are shown in Figure 8.10. The
postcodes which make up the deterministic catchment all have moderate to high probability
in the probabilistic catchment. The catchment is large with high probabilities maintained
to the southern extent of the catchment?, reflecting minimal competition from stations on
other lines. However, the probabilistic catchment, along with those for Galashiels and Stow
(see Figures 8.15 and 8.16), suggest that there is competition with Galashiels, and to a lesser
extent Stow. The probabilistic catchment for Tweedbank also extends further north-west,
encompassing Innerleithen and Peebles, and north-east beyond the extent of the deterministic
catchment.

Figure 8.11 incorporates a map taken from Transport Scotland’s first-year evaluation report of
the Borders Railway, which plots the trip origins of surveyed passengers who boarded at each
of the three Scottish Borders stations. This is useful empirical evidence that can be used to
assess the realism of the probabilistic catchments generated by the station choice models. To
aid interpretation, the map has been geo-referenced and the probabilistic and deterministic

catchments for Tweedbank overlaid. While the observed trip origins of passengers boarding

3The reader is reminded that the extent of the catchment is limited to 60 minutes drive-time from the station
as part of the demand forecasting methodology.
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at Tweedbank (red dots) are predominantly located within the area of higher probability, as
would be expected, they do also appear in Innerleithen and Peebles in the north-west, and
east towards Berwick-upon-Tweed, outside of the deterministic catchment area, as predicted
by the station choice model. In addition, there are trip origins for passengers who boarded
at Galashiels station (blue dots) throughout the area of higher probability, in the towns of
Selkirk, Hawick, Jedburgh, Earlston and Kelso. Again, this supports the station choice model,
which has generally predicted a 10-25% probability of Galashiels station been chosen for

trips originating from postcodes in these towns.

8.6.1.2 Galashiels

Prior to applying the growth uplift, model 9 has under-predicted demand at Galashiels by
54%, performing somewhat worse than model 7 (—41%), but still considerably better than
the business case forecast. The performance of both models is improved when the growth
uplift is applied (—47% and —33% respectively), although this gain is likely to be negated
by further demand build-up before ‘steady-state’ demand is reached. There are, however,
several factors that might help explain the poor performance of the model for this particular

station, and these will now be considered below.

8.6.1.2.1 Car parking Unlike the other new stations on the line, Galashiels has no station
car park. It is possible that the station choice model is penalising Galashiels excessively,
attributing higher probabilities to Tweedbank and Stow than justified for some postcodes.
The number of car parking spaces is also an important factor for generating trips in the trip
end model, and the under-prediction by both the deterministic and probabilistic models
may indicate that the trip end models generally perform less well in these circumstances.
Alternatively, it could indicate that other parking opportunities are available that are not
represented in the model but are being used by passengers boarding at Galashiels. This
certainly appears a plausible explanation, as a new ‘pay and display’ car park with 43 spaces
was built as part of the Galashiels Transport Interchange development (see Section 8.6.1.2.2)
and is just a minute or two’s walk from the station. Including these spaces in the trip end
model would increase the demand forecast (after growth uplift) by some 120,000 annual
trips*, reducing the under-prediction to —12%. This should be treated with some caution as
there are likely to be additional car parking facilities (including on-street parking) at many
of the stations in the calibration dataset, and these were not accounted for in either the
trip end or station choice models. However, the survey carried out as part of the first-year
evaluation of the line, does show that 10% of passengers who boarded at Galashiels parked
at the station (see Figure 8.12), suggesting that this might be a factor in the under-prediction,

although this proportion is substantially lower than at the other stations.

“Note: this does not account for the impact of this car park on the station choice probabilities for this or other
stations.
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FIGURE 8.12: Reported station access mode for users of the Borders Railway. Note: Reprinted
from ‘Borders Railway Year 1 Evaluation’, 2017, p. 43. Reproduced under Open Government
Licence v3.0.

8.6.1.2.2 Galashiels Transport Interchange As part of the Borders Railway project, a
new Transport Interchange was built next to the new station at Galashiels, providing access
to train and bus services (See Figure 8.13 (Wikipedia contributors, 2017)). The Transport
Interchange, which has a range of facilities including a café, tourist information, showers
and bike lockers, is being promoted as the ‘gateway to the borders’ and is a key hub for bus
services in the region, with 1,400 bus departures in a typical week (Transport Scotland, 2016).
Consequently, Galashiels is likely to be the preferred departure station for those using the bus
for their access journey and travelling from many of the towns and villages in the Scottish
Borders. This is supported by the first-year evaluation report, which found that 21% of survey
respondents accessed Galashiels station by bus, compared with 3% for Tweedbank and 0%
for Stow (See Figure 8.12 (Transport Scotland, 2017, p. 43)). The proportion accessing
Galashiels station by bus is also particularly high when compared to the national average
of 11% (Transport Focus, 2015a). Access by bus may explain why passengers who boarded
at Galashiels originated from towns located south and east of Tweedbank, such as Selkirk,
Hawick, Jedburgh, and Kelso, as indicated by the blue dots in Figure 8.14 which shows the
Transport Scotland survey data overlaid with the probabilistic and deterministic catchments
for Galashiels (also shown in Figure 8.15). These towns are nearer to Tweedbank station by
road and Tweedbank has a large free car park, so it seems unlikely that many of those driving
and parking would choose to board at Galashiels from these locations. The deterministic
catchment for Galashiels is relatively small, primarily encompassing the immediate area
around Galashiels itself and locations due west. The probabilistic catchment is far larger,
and incorporates the towns from which passengers are known to have chosen to board at
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FIGURE 8.13: The Galashiels Transport Interchange. Note: Reprinted from ‘Galashiels’ by
Wikipedia Contributors, 2017, November 29. ©Walter Baxter, CC-BY-SA-2.0.

Galashiels. For example, the station choice model assigns a 25% probability of Galashiels
station being chosen for postcodes in the centre of Hawick, and 14% for postcodes in the
centre of Jedburgh. While the choice model does include a boolean variable indicating the
presence or not of a bus interchange at a station, and this has a positive effect on utility, all
the stations on the new line are recorded as having this facility. Therefore, the weighting
attributed to bus interchange will be the same for Galashiels and Tweedbank, and the model
may have under-estimated the likelihood of Galashiels being chosen. This suggests that a
more nuanced measure of bus interchange may be preferable, as there is clearly a substantial
difference between a dedicated bus interchange where multiple routes converge and a bus
stop at a station which is served by a single service. Alternatively, if access mode choice could
be adequately modelled, then mode-specific choice probabilities could be generated, which
would be expected to increase the probability of Galashiels being chosen by those accessing

a station by bus.

The number of car parking spaces is entered into both the station choice model and the trip
end model. This can be justified on the basis that a station is more likely to be chosen if it
has a car park (and if it has more spaces, as there is more likely to be a space available), and
the larger a car park the more trips it is likely to generate. In the case of bus services, the
increased likelihood of a station being chosen if it can be accessed by bus is captured in the
station choice model (subject to the limitations already discussed), but there is no variable in
the trip end model to capture the effect of more bus services generating more trips. This may
be less important when access by bus is a relatively minor proportion of access trips (as is
typically the case), but when it accounts for over 20%, as at Galashiels, the trip end model
might under-estimate the number of trips. A possible solution could be to include bus service

frequency, or a measure based on frequency and route diversity, into the trip end model.
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FIGURE 8.14: Observed origins of passengers boarding at each Scottish Borders station, from geo-referenced source map (Transport Scotland, 2017, p. 30)

and overlaid with the Galashiels probabilistic and deterministic catchments.
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FIGURE 8.15: Deterministic and probabilistic catchments for Galashiels (GAL).

8.6.1.2.3 Tourism The final factor that may help explain the large under-prediction for
Galashiels is the role of tourist trips. There is evidence that the opening of the new line
has boosted tourism, particular in the Scottish Borders. The Scottish Tourism Economic
Assessment Monitor (STEAM) statistics, which compared the number of visitor days in hotel
and bed and breakfast accommodation in the first half of 2016 with the first half of 2015
(before the line opened), found an increase of 12.3% in Midlothian and 27% in the Scottish
Borders (Midlothian Council, 2017). Of the passengers who responded to the first-year
evaluation survey, which was completed in November/December and so outside of the peak
tourist season, 39% said the purpose of their journey was either a tourist day trip or overnight
stay. Once reported trip frequency is taken into account, this equates to 15% of annual
single trips. While the majority of these were tourist day trips and overnight stays to/from
Edinburgh (60% and 9% respectively), a significant proportion were day trips and overnight
stays to the Scottish Borders (20% and 9% respectively). In contrast, only 2% of tourist trips
were to Midlothian, with no overnight stays. Given that Galashiels is being promoted as
the ‘Gateway to the Borders’, and bus services for onward travel are concentrated here, it is
a reasonable assumption that a large proportion of tourist trips to the borders will be via
Galashiels station. However, the only ‘attraction’ variable included in the trip end model is
the workplace population within a one-minute drive of the station. The model is therefore
likely to under-estimate demand at stations, such as Galashiels, where tourist trips form an
important component of demand. The trip end model might be improved by incorporating a
variable that could account for trips generated by visiting tourists. One possibility would be
to include a measure of the number of available beds within a certain distance of the station,

which could include hotels, bed and breakfast establishments and holiday rental properties.
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8.6.1.3 Stow

Model 9 has produced a reasonably accurate demand forecast for Stow, bearing in mind the
potential for demand build-up, with predicted trips +17% and +34% of actual trips before
and after applying the growth uplift respectively, performing rather better than model 7
(+46% and +67% respectively). The deterministic and probabilistic catchments for Stow are
shown in Figure 8.16. While the postcodes with the highest probability of choosing Stow
also form the deterministic catchment, the probabilities suggest some competition with other
stations, and this is supported by the presence of a few origins of passengers who boarded at
Galashiels and Tweedbank, from the first-year evaluation survey, within the deterministic
catchment (see Figure 8.17). This might partly reflect the difference in service frequency,
as 19 fewer trains serve Stow on a typical weekday. The extent of the observed catchment
for Stow is likely to be less reliable than that for Tweedbank or Galashiels, as relatively few

passengers in the survey boarded at Stow.
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FIGURE 8.16: Deterministic and probabilistic catchments for Stow (SOI).

8.6.1.4 Midlothian stations

The Midlothian stations will be considered together, as a common factor may have contributed
to the over-forecasting of demand at several of these stations. Prior to applying the growth
uplift, model 9 substantially over-forecast demand at Gorebridge and Shawfair stations,
by 143% and 209% respectively, although this does represent a considerable improvement
over model 7, which over-forecast these stations by 174% and 408% respectively. Model
9 performed rather better for Newtongrange (+53%) and forecast demand at Eskbank to
within 10% of the actual number of trips (+9%).
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FIGURE 8.17: Observed origins of passengers boarding at each Scottish Borders station, from
geo-referenced source map (Transport Scotland, 2017, p. 30) and overlaid with the Stow
probabilistic and deterministic catchments.

The first-year evaluation study asked non-users and one-off users of the Borders Railway
line to indicate their major and minor reasons for not using the line, or for not using it
more frequently. The responses reveal a marked difference between residents of the Scottish
Borders and Midlothian. In the Scottish Borders, the fact that buses were cheaper, more
convenient and allow the use of the National Entitlement Card® were identified as major
reasons by 19%, 12% and 16% of respondents respectively. In contrast, these were identified
as major reasons by 46%, 37% and 27% of respondents from Midlothian respectively. A
potential reason for this difference is the flat-rate single fare of £1.60 (at time of writing)
offered by Lothian Buses, which is valid as far as Gorebridge. This is extremely competitive
when compared to the cost of travelling by train from Gorebridge to central Edinburgh. The
single train fare is £5.50, almost 3.5 times the bus fare. The bus fare also compares favourably
to the single train fare from Newtongrange, Eskbank and Shawfair stations (£4.80, £4.50
and £3.40 respectively). By way of contrast, the train fare from Galashiels to Edinburgh
is £9.60, which is only 1.4 times the cost of the bus fare (£6.90), and potentially offset
by the greater travel time savings. It is therefore possible that competition from local bus
services is suppressing demand at the Midlothian stations, and as the trip end model is a
rail-only model it is unable to take account of competition from other modes. However, this
does not explain why the model’s forecast for Eskbank is reasonably accurate. One possible

explanation may relate to differences in the socio-demographics of the station catchment

5The National Entitlement Card provides free bus travel throughout Scotland for those aged over 60 or with
eligible disabilities, and reduced fares for those aged 16-18.
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population. For example, Eskbank appears to be a more affluent area, with an average house
price of £318k, compared to £167k and £173k for Gorebridge and Shawfair®, and may have

a greater proportion of workers commuting to Edinburgh who are less sensitive to price.

It may be possible to improve the trip end model by incorporating a variable representing the
differential in fare between bus and train, although it would be a challenge to identify the
most appropriate destination to use for this comparison, and other factors will be important
determinants of bus patronage, such as journey time and service frequency. In view of these
difficulties, this issue might be better addressed through the use of flow models. Previous
work by Blainey and Preston (2010) attempted to calibrate flow models that could capture
the impact of bus competition on rail demand, by including a relative bus journey time
variable. As the data was obtained manually from an online journey planner, only a small
subset of flows could be included in these models, and a counter-intuitive parameter sign
was also obtained, suggesting that as bus journeys become faster relative to the train, rail
demand increases. Unfortunately, bus fare was not included in these models, due to the
lack of available data. This approach could be revisited, using the framework that has been
developed as part of this research (see Section 5.3) to automatically generate the necessary
journey data. Bus fares remain problematic, as there is no national dataset containing this
information. However, fares are now provided on the Traveline Scotland journey planner,
and these could potentially be obtained and used to calibrate a flow model using Scotland as

a case study.

The deterministic and probabilistic catchments for the Midlothian stations are shown in
Figure 8.18 for Gorebridge, Figure 8.19 for Newtongrange, Figure 8.20 for Eskbank; and
Figure 8.21 for Shawfair. The observed origins of passengers who boarded the Midlothian
stations, obtained from the first-year evaluation survey are shown in Figure 8.22 (Transport
Scotland, 2017, p. 29). As substantially fewer passengers in the evaluation survey boarded at
the Midlothian stations compared to the Scottish Borders stations (8% of survey respondents
were residents of Midlothian, and 60% were residents of the Scottish Borders), these origins
are less likely to capture the full extent of the actual catchments. This is particularly the case

for Shawfair, where there only appears to be a single recorded origin.

8.7 Forecasting abstraction from existing stations

In addition to generating a demand forecast for a proposed new station, it is important to
assess the potential effect of the new station on demand at existing stations. A new station
may abstract passengers from one or more existing stations, and the net change in demand
across the new and existing stations could be substantially lower than the gross forecast
for a new station alone might suggest. If the scheme appraisal process does not adequately
account for abstraction from existing stations, it could result in a new station being built that

SAverage house price data was obtained from http://www.rightmove.co.uk/house on 28/11/2017.
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FIGURE 8.18: Deterministic and probabilistic catchments for Gorebridge (GBG).
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FIGURE 8.22: Observed origins of passengers boarding at each Midlothian station. Note:
Reprinted from ‘Borders Railway Year 1 Evaluation’, 2017, p. 29. Reproduced under Open
Government Licence v3.0.

fails to deliver the expected economic and societal benefits. A methodology was therefore
developed that can assess the potential extent of abstraction, based on the changes that occur
to the probabilistic catchments of the affected station(s). The methodology consists of the

following key steps:

* Identify the unit postcodes within 60 minutes drive-time of the station(s) identified as

being ‘at risk’ of abstraction.

* For each ‘at risk’ station generate a ‘before’ choice set (selecting from current stations
only) and an ‘after’ choice set (selecting from current stations plus the proposed new
station) for each postcode.

* Create and populate separate probability tables for the before and after situation.

* Obtain the weighted population (applying the probability and distance weightings) for
the ‘at risk’ station, in both the before and after situation and calculate the percentage
change.

* Assume an elasticity of one between weighted population and the number of entries/ex-
its, and apply the percentage change to the most recently reported annual entries/exists,
thus giving an estimate of the abstraction effect. This is based on evidence in the PDFH

relating to the external environment, and forecasting framework assumptions that
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the population elasticity is equal to one for the number of trips originating in a zone

(Association of Train Operating Companies, 2013, Chapter C1)”.

This methodology was applied to assess the extent of abstraction that might result from
several potential new stations in Wales, which formed part of a piece of consultancy work
carried out for the Welsh Government (See Section 8.9 for more details). The example
application presented here examines the abstraction effect of a proposed new station known
as ‘South Wrexham’ (actually located in Rhosymedre), on the existing stations at Ruabon and
Chirk. The results of the abstraction analysis, summarised in Table 8.6, show a substantial
abstraction from Ruabon and, to a lesser extent, from Chirk. As the demand forecast for
South Wrexham station was [redacted ] annual entries/exits, the abstraction analysis suggests
that over [redacted] of these trips [redacted] would be abstracted from Ruabon and Chirk.
The effect of the new station on the probabilistic catchment for Ruabon station can be
seen by comparing Figures 8.23 and 8.24, which show the catchment before and after the
new station. While the proposed methodology has been successfully applied and appears
promising, further work is needed to validate this approach, if possible against real-world

observed abstraction effects.

Station Weighted Weighted % Trips Adjusted Change
population population change 2015/16  trips (trips)
(before new  (after new
station) station)

Ruabon 3839 2312 -40 92986 55792 -37194

Chirk 1620 1381 -15 68444 58177 -10267

TABLE 8.6: Results of abstraction analysis for a new station at South Wrexham.

S .

FIGURE 8.23: The existing probabilistic FIGURE 8.24: The probabilistic catchment
catchment for Ruabon station. for Ruabon station if South Wrexham sta-
tion was opened.

7 Although PDFH elasticities are intended to be applied to flows, the unitary elasticity assumes that only origin
population is allowed to influence growth in rail demand. There is a lack of evidence on the appropriate elasticity
to use if both origin and destination population changes are considered.
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8.8 Impact of the accessibility term on demand forecasts and

abstraction analysis

Two demand forecasts based on probabilistic station catchments have been reported for
each of the case study stations, calculated using trip end models 8 and 9. The difference
between these two models is the inclusion of the accessibility term in the station choice model
component of model 9. As discussed in Section 6.7.2, the negative estimated parameter for
the accessibility term is indicative of a competition effect, suggesting that the closer a station
is on average to other, and larger, stations within a specific choice set, the less likely it is
to be chosen. The trip end model results presented in Table 7.6 show that model 9 has the
lower AIC value and the Akaike weight indicates a high probability that this is the better
model. To assess the impact of including the accessibility term in the station choice model,
the difference between the forecast entries/exits produced by the two models for the Borders
Railway stations are summarised in Table 8.7, along with their performance against actual
station usage in 2016/17. The differences between the forecasts produced by the two models
are very small, with the largest adjustment made to Tweedbank station, with the number of
forecast trips reduced by 4,238 (0.81%); and the smallest adjustment made to Gorebridge
station with a increase of just 197 trips (0.09%). However, it is interesting to note that with
the exception of Gorebridge, the number of trips has been adjusted in the required direction
to produce a more accurate forecast, with an increase for Galashiels and a reduction for the

other five stations.

Station Model 8 - % Model 9 % change Model 9 - %
difference forecast in forecast  difference
from 16/17 less Model from model from 16/17
8 forecast 8

Tweedbank 9.74 -4238 -0.81 8.84
Galashiels -54.03 845 0.54 -53.78
Stow 17.94 -490 -0.63 17.20
Gorebridge 143.07 197 0.09 143.29
Newtongrange 53.01 -603 -0.29 52.57
Eskbank 9.98 -1885 -0.75 9.15
Shawfair 211.75 -488 -0.75 209.42

TABLE 8.7: Analysis of the effect of including the accessibility term in the station choice
model on demand forecasts for the Borders Railway stations.

The issue of spatial correlation and the proportional substitution behaviour of the MNL model
is of particular relevance to the abstraction analysis, as in the developed methodology an
MNL model is specifically run before and after the proposed new station is added to the
choice set of affected postcodes. To assess the extent to which the accessibility term can alter

the proportional substitution effect, an analysis was carried out for two postcodes affected
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by the proposed South Wrexham station. The results of the analysis are shown in Tables 8.8

and 8.9, and a map of the station and postcode locations is shown in Figure 8.25.

Station Probability =~ Proportion From To S. Expected Probability % change in
Penyf- Wrexham  probability  forecast probability
fordd (if propor- by model

tional)

Hope 0.000 0.000 0.000 0.000 0.000 0.000 -92.20

Cefn-y-Bedd 0.000 0.000 0.000 0.000 0.000 0.000 -92.26

Caergwrle 0.000 0.000 0.000 0.000 0.000 0.000 -92.24

Gwersyllt 0.000 0.000 0.000 0.000 0.000 0.000 -92.29

Gobowen 0.005 0.005 0.000 0.005 0.000 0.000 -92.39

Wrexham Cent. 0.005 0.005 0.000 0.005 0.000 0.000 -92.31

Chirk 0.040 0.040 0.000 0.038 0.002 0.003 -92.42

Wrexham Gen. 0.111 0.111 0.000 0.106 0.005 0.009 -92.31

Ruabon 0.838 0.838 0.000 0.802 0.036 0.031 -96.29

Penyffordd (-) 0.000

S. Wrexham (+) 0.956 0.956

Totals 1.000 1.000 0.000 0.956 1.000 1.000

TABLE 8.8: Analysis of the impact of the accessibility term on proportional substitution when
South Wrexham station is added — choice set for postcode LL14 3BJ.

Station Probability Proportion From To S. Expected Probability % change in
Penyf- Wrexham probability  forecast probability
fordd (if propor- by model

tional)

Hope 0.001 0.001 0.000 0.001 0.000 0.000 -70.61

Gwersyllt 0.001 0.001 0.000 0.001 0.000 0.000 -70.96

Cefn-y-Bedd 0.002 0.002 0.000 0.001 0.000 0.000 -70.85

Caergwrle 0.003 0.003 0.000 0.002 0.001 0.001 -70.78

Wrexham Cent. 0.013 0.013 0.000 0.011 0.003 0.004 -71.03

Gobowen 0.023 0.023 0.000 0.018 0.005 0.007 -71.34

Chirk 0.114 0.114 0.000 0.091 0.024 0.033 -71.47

Wrexham Gen. 0.287 0.287 0.000 0.228 0.059 0.083 -71.03

Ruabon 0.554 0.555 0.001 0.441 0.114 0.078 -86.02

Penyffordd (-) 0.002

S. Wrexham (+) 0.794 0.794

Totals 1.000 1.000 0.002 0.794 1.000 1.000

TABLE 8.9: Analysis of the impact of the accessibility term on proportional substitution when
South Wrexham station is added — choice set for postcode LL20 8AN.

In both examples, Penyffordd station was removed from the choice set of the nearest ten
stations, and South Wrexham was added. Two adjustments are necessary to calculate the
expected probabilities: the probability of Penyffordd has to be allocated to the remaining
nine stations in proportion to their probabilities®; and the probability of South Wrexham has
to be drawn from the nine stations, also in proportion to their probabilities. The tables show

the expected probability of each station being chosen assuming proportional substitution,

8In these examples the probability of Penyffordd station being chosen was extremely low so its removal has
negligible impact on the analysis.
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FIGURE 8.25: Map showing the location of postcodes and stations relevant to the analysis of
the accessibility term’s effect on proportional substitution behaviour.

alongside the probability forecast by the model (with accessibility term). In the case of both
postcodes, the probability of Ruabon station being chosen is lower than that expected from a
proportional substitution pattern. For LL208AN the chance of Ruabon station being chosen is
reduced from 11.4% to 7.8%, and for LL143BJ it is reduced from 3.6% to 3.1%. In contrast
the probabilities of the other stations being chosen are slightly higher than would be expected
under proportional substitution, for example the chance of Wrexham General being chosen
for LL208AN increases from 5.9% to 8.3%. It can be seen that the percentage reduction in
probability caused by the introduction of South Wrexham is not the same for each station; it
is noticeably higher for Ruabon, the closest station to South Wrexham, and then it gradually
falls for the remaining stations as their distance from South Wrexham increases. This is the
effect that would be intuitively expected, with a new station abstracting more passengers from
closer stations than more distant stations. However, further work would be needed to assess
whether this altered substitution pattern was a realistic representation of the abstraction

behaviours resulting from competition between stations.
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8.9 Real-world application as a forecasting tool for the Welsh

Government

The methodologies described in this chapter, incorporating the station choice and trip end
models that were calibrated as part of this research project, have been used to produce
demand forecasts for 12 proposed new stations in Wales, and to assess the likely abstraction
effects on five existing stations. This work was commissioned by the Welsh Government as part
of the Welsh National Travel Plan, and forecasts were produced using both deterministic and
probabilistic station catchments. Table 8.10 summarises the predicted annual entries/exits
for each of the 12 stations produced using the two approaches, and shows the percentage
difference between the two forecasts. For eight of the stations the demand forecast is higher
when using probabilistic catchments, ranging from +0.7% to +35.7%, while for the remaining
four stations the forecast is lower, ranging from —12.7% to —28.5%. The difference between
the two forecasts is greater than £20% for half of the stations. While the accuracy of these
forecasts cannot yet be assessed, they do affirm the earlier case study findings that meaningful
differences occur between forecasts produced using models with deterministic or probabilistic
station catchments. These differences are large enough to potentially affect the viability
of proposed new station schemes or to impact planned levels of infrastructure, services

and facilities. The full report that was compiled for this consultancy work can be found in

Appendix C.
Predicted annual entries/exits 2015/16
Potential station Deterministic  Probabilistic  Difference (%)
catchment catchment
Cockett [redacted] [redacted] 29.6
Ely Mill/Victoria park [redacted] [redacted] -16.7
Llanwern [redacted] [redacted] 3.4
Newport Road/Rover Way [redacted] [redacted] -28.5
Landore [redacted] [redacted] 22.8
St. Clears [redacted] [redacted] 0.7
Deeside Industrial Park [redacted] [redacted] 35.7
North Wrexham [redacted] [redacted] 14.4
South Wrexham [redacted] [redacted] 20.3
Llangefni [redacted] [redacted] 1.4
St. Mellons/Cardiff Parkway [redacted] [redacted] -26.8
Carno [redacted] [redacted] -12.7

TABLE 8.10: Summary of station demand forecasts for potential new station locations in
Wales, showing the difference between forecasts produced using deterministic or probabilistic
station catchments.
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8.10 Conclusions

This chapter has described the development and application of a methodology to forecast
demand for new stations using a trip end model that incorporates probabilistic station
catchments based on station choice modelled at the unit postcode level. The performance of
the trip end model was assessed for ten recently opened stations, and for all but three of the
stations the model with probabilistic station catchments produced more accurate forecasts
than the model with deterministic catchments. For two of the stations there was very little
difference in the forecasts produced by the two types of model, while in the remaining case

the deterministic catchment model produced a more accurate forecast.

For several of the case study stations, the probabilistic catchment model resulted in an
adjustment to the demand forecast produced by the deterministic catchment model of over
30%. For example, the forecast for Tweedbank was reduced by 36% (some 330,000 trips)
and the Shawfair forecast was reduced by 39% (some 48,000 trips). In both cases the revised
forecast was more accurate. A difference of this magnitude could result in a change to the
benefit-cost ratio of a proposed new station that alters the assessment made of its viability.
This signifies the potential importance of using a trip end model based on probabilistic
station catchments, that better represent the complexity of real-life station catchments. The
assessment of scheme viability has the potential to be further enhanced by the proposed
method for estimating abstraction from existing stations.

The trip end model with probabilistic station catchments has also performed well when
compared to the official forecasts produced during scheme appraisal. This is particularly the
case for the three Scottish Borders stations on the new Borders Railway line, where the final
business case forecast produced by Transport Scotland massively under-predicted demand.
However, for two stations on this line (Gorebridge and Shawfair) the model over-predicted
demand by more than 100%, although this was considerably better than the forecast produced
by the model with deterministic catchments, and under-forecast demand at Galashiels by
almost 50%. In those cases where the model performed less well, there appear to be several
contributing factors that highlight weaknesses in the trip end model that are not related to
how the station catchment is defined. These include the inability to account for competition
from other modes; not representing tourism as an attraction variable; and only allowing
the ‘quality’ of access by one motorised mode (i.e. parking spaces for car users) to generate

additional trips. Possible solutions to these issues have been outlined.

The potential of this practical and workable methodology, when combined with the underly-
ing trip end and station choice models, to produce more robust station demand forecasts
has already been recognised by transport practitioners at the national level, with work

commissioned by the Welsh Government to assess 12 proposed station locations.






Chapter 9

Conclusions

9.1 Introduction

The overall aim of this research project was to determine whether the performance of the
aggregate rail demand models commonly used in GB to forecast demand for new railway
stations could be improved by defining probabilistic station catchments; and six key objectives
that needed to be met in order to achieve this aim were set out in the introduction to this
thesis. The research question arose from two connected concerns: that the catchments
defined using existing methods were not adequately capturing the complexities of real-world
station catchments; and that this might have contributed to some erroneous station demand
forecasts over recent years. An alternative approach was suggested, where catchment zonal
units would be assigned to several ‘competing’ stations, with the population of each zone
allocated proportionately to each station based on probabilities derived using a station choice
model. This chapter will identify how the research objectives were met and set out how the
project has advanced knowledge in the area of rail demand forecasting. It will also consider
the professional practice and policy implications of the research, discuss potential limitations,
and make some proposals for future work.

9.2 What did we know before?

Trip rate or trip end models are the most common type of model used to forecast demand
for new railway stations in GB, but these have not always perform well, with examples of
substantial under- or over-prediction. The models are typically developed and applied on
a local basis, reflecting guidance from the UK DfT (Department for Transport, 2011) and
the rail industry (Association of Train Operating Companies, 2013), which both consider
the appraisal of new stations to be a special case requiring bespoke models. There has been

some previous research to develop nationally applicable trip end and flow models for local
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stations (Blainey, 2010; Blainey & Preston, 2013a). However, in common with aggregate
models generally, these rely on simplistic methods of defining station catchments that assume
station choice is a deterministic process. There is an increasing body of evidence that real
station catchments are far more complex entities, and failure to account for this may have

contributed to the poor performance of the models used to appraise some recent schemes.

A review of prior station choice research found that MNL and NL have been the most commonly
applied models, primarily used to explore station choice alone or combined access mode and
station choice. As applied, these models have ignored the spatial nature of railway station
choice, and their proportional substitution behaviour is problematic: a new station would be
expected to abstract proportionately more passengers from existing stations that are closer to
it. While recent research has developed a ML model to account for spatial correlation between
station pairs (Weiss & Habib, 2016), this has not been tested in a demand forecasting scenario,
and it remains unclear whether it can produce a realistic pattern of substitution. A failure
to move beyond simply explaining station choice behaviour is a general criticism that can
be made of most prior research. The only previous work to take a broadly similar approach
to that proposed for this project was the unsuccessful attempt by Wardman and Whelan
(1999) to calibrate a flow model that defined probabilistic catchments by apportioning the

population of postal sectors to one of five competing stations.

9.3 Research summary — what do we know now?

9.3.1 Models of station choice

The first part of the research project, relating to objectives 1, 2 and 3, was concerned with
the development of station choice models suitable for integration into either trip end or flow
models of rail demand. This involved obtaining and preparing observed station choice data,
generating the potential station choice predictor variables, and then model calibration and

appraisal.

Data from on-train passengers surveys were obtained from the WG and Transport Scotland’s
LATIS service, and several novel techniques were developed to validate these datasets and
maximise their usefulness. These included the estimation of trip origins from incomplete
address information, and the automated identification of illogical trips. Analysis of the trip
data showed that most postcodes were located within the observed catchments of multiple
stations, and there was little evidence to support the notion of stations having discrete non-
competing catchments. Objective 1, to obtain, process and validate suitable survey datasets
able to reveal observed station choice behaviour, ideally covering more than one region of

GB, was therefore achieved.

A range of potential station choice predictor variables were derived from open transport

data sources, with a focus on ensuring a realistic representation of components of the access
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journey and train leg that would have influenced passengers’ choice of station on the day and
at the time that they travelled. A processing framework based around OTP, R and PostgreSQL
was implemented to manipulate the large amount of data in a reproducible manner, and
an API wrapper was written to query OTP and parse the planner response. Objective 2, to
derive candidate predictor variables for the station choice models, with a particular focus on

maximising the potential of open transport data sources, was therefore achieved.

MNL models were calibrated separately for the WG and LATIS datasets, with the choice set
for each observation defined as the ten nearest stations (plus the nearest major station, if not
present). In-sample predictive performance of the best MNL models was substantially better
than a comparator base model, where the nearest station was assumed to have a probability
of one. There was also reasonably good concurrence in the parameter estimates for many of
the predictor variables across the two datasets, indicating a degree of transferability. This
was tested by applying the best models to the alternative dataset, and while the WG models
performed rather better on the LATIS dataset than vice-versa, in all cases the predictive
performance was superior to the base model. RPL models were also calibrated, and while
there was some evidence of individual taste variation with respect to mode-specific access
time, the marginal difference in predictive performance did not justify the extra complexity
and computational time that would be involved in simulating station probabilities for every

unit postcode in GB (a requirement for calibrating a national aggregate model).

A model intended for incorporation into a national trip end model was then calibrated
using the combined dataset, thus maximising the information available to the model. An
accessibility term was introduced to account for spatial correlation between stations, and
a significant negative parameter was estimated, indicating the presence of a competition
effect, with a station less likely to be chosen the closer it is on average to other (and more
attractive) stations. Using a fixed attractiveness weighting in the accessibility term based on
station category was found to be a suitable proxy for total entries/exits, enabling the term to
be used when choice sets contain a proposed new station. The best performing model, and
the one used in subsequent trip end model calibration, is shown in Equation 6.11. Objective
3, to calibrate station choice models appropriate for integrating into aggregate rail demand
models, and assess their predictive performance and transferability, was therefore achieved.

Vaik = exp(ﬂNk +714/ Dy + 5Uk +61an + CCk +nPs; + QTk + LBy +K1nAk). (6.11 revisited)

9.3.2 A national trip end model

The second part of the research project, relating to objectives 4, 5 and 6, was concerned with

the calibration, application and appraisal of national trip end models for GB.

A model form was proposed where a station’s trips are generated by the population of each

postcode which has that station in its choice set, with the generation potential dependent
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upon the probability of the station being chosen and, by way of a two-stage decay function,
the postcode’s distance from the station. Choice sets were constructed for every postcode in
mainland GB, consisting of the ten nearest stations, and the associated choice probabilities
were calculated by applying the combined dataset station choice model. Trip end models
were calibrated for Category E and F stations in mainland GB, using both probabilistic
and deterministic catchment definitions. The models with probabilistic catchments were
found to perform better, in terms of adjusted R? and AIC, than those with deterministic
catchments. Importantly, greater weight was given to the population variable in the models
with probabilistic catchments, while reduced weight was given to variables related to station
services and characteristics. This indicates that the more realistic representation of the
catchment in these models enables differences in the number of trips to be better explained
through the population variable, and as a consequence they should be more transferable and
better suited for use as a national predictive model. The population parameter in the model
with deterministic catchments was substantially higher than that found in similar models
calibrated by Blainey (2017), where the zonal unit was of lower spatial resolution (census
output area). This suggests that the use of postcodes as the zonal unit has in itself been
important in defining more realistic station catchments. The form of the trip end model
with probabilistic station catchments is shown in Equation 7.2. Objective 4, to develop a
methodology to incorporate probability-based station catchments into aggregate demand
models and apply this methodology to calibrate a national-scale model for local railway

stations in GB, was therefore achieved.

z
InV,=a+p (anPrziPszi) +vInF;+ 6 InJ;, +€lnPs; + {Te; + nEl; + 0B; (7.2 revisited)
P4

A methodology was developed to apply the calibrated trip end models to forecast demand
for new stations, and to estimate abstraction effects from existing stations; thus achieving
objective 5. The models were then applied to several case studies, and their predictive
performance was assessed for ten recently opened stations, including seven on a newly built
railway line. For all but three stations, the model with probabilistic catchments produced
a more accurate forecast than the model with deterministic catchments. For several of the
stations, the probabilistic catchment model adjusted the demand forecast by more than 30%
in the desired direction, highlighting the potential importance of using a trip end model that
better represents real-life station catchments. The model also performed well when compared
to the official forecasts produced during scheme appraisals, particularly for stations on the
new Borders Railway line. A methodology developed to assess the extent that a new station
might extract demand from existing stations was tested for a proposed new station in Wales,
and an analysis of the impact of the accessibility term showed an appropriate adjustment to
the MNL proportional substitution pattern, with the new station abstracting proportionately
more demand from closer existing stations. Objective 6, to apply the demand forecasting

methodology to several case studies, and carry out a performance appraisal, including an
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assessment of models with either deterministic or probabilistic station catchments, was
therefore achieved.

9.3.3 Summary of contribution to knowledge

This research project has made the following empirical or methodological contributions to
knowledge in the field of rail demand forecasting and related fields:

* A national trip end model for new local railway stations that incorporates probabilistic
station catchments derived from a station choice model applied at the unit postcode
level, and which has superior predictive performance and transferability when com-
pared to models based on simple deterministic station catchments. This is the first
known example of successfully incorporating probabilistic station catchments into
an aggregate rail demand model, and is an important advancement of the previous
national models developed by Blainey (2010), which were based on deterministic

station catchments.

* MNL station choice models suitable for integration into either trip end or flow models
of rail demand where the choice decision is modelled at high spatial resolution (unit
postcode level) and that can account for spatial correlation between stations through
incorporation of an accessibility term based on Fotheringham’s CDM. The CDM has not
previously been applied in the context of station choice modelling, and in the combined

trip end variant model revealed the presence of a competition effect.

* A methodology for applying the trip end model with probabilistic station catchments
to forecast demand for new individual stations or new railway lines, which includes

the assessment of abstraction from existing stations.

* Two novel methods to process and validate OD survey data. The first maximises the
usability of OD survey data by estimating the coordinates of an origin or destination
based on incomplete address information; and the second identifies the two most
common errors in this type of data (‘reversed trips’ and ‘substantial backtracks’) by

calculating ratios based on information inherent to the reported trip.

* A framework to automatically generate variables for transport-related models from
open transport data using open source tools, supported by a set of functions to query
the OTP routing API.

9.4 Practice and policy implications

Forecasting demand for new railway stations is considered by the rail industry to be a ‘special

case’ requiring bespoke models to be developed and applied in a local context for the specific
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scheme being appraised. As established in Chapter 2, this is primarily achieved through the
use of trip rate/end models that have not always performed well. Given the background
of growing passenger demand and increasing interest in opening new stations and lines,
there will be an ongoing need to assess proposed schemes. The national trip end model
that has been developed during this research project has the potential to remove the need
for scheme proponents, such as local and regional government or transport authorities, to
commission bespoke studies. In cases where it was still considered prudent to apply local
models, the national model could be used as a sense-check tool. For example, if demand
forecasts produced by the local and national models differed by orders of magnitude, it would
be a clear warning that the local models may not be reliable. Given that the level of station
usage is a key driver of the benefit-cost ratio upon which investment decisions are made,
identifying a potential problem with the demand forecast at an early stage of a project would

be hugely beneficial.

Ideally, advice contained in the rail industry’s demand modelling ‘bible’, the PDFH, would
be updated to highlight the approach adopted in this research project and the potential
benefits of a national model. However, to derive maximum benefit from the work already
completed, attention should be given to how the knowledge already gained can be transferred
to industry practitioners. Access to the model could be provided on a consultancy basis, as
has already happened in the case of work completed for the Welsh Government to assess
12 station locations as part of the Welsh National Transport Plan. An alternative and more
sophisticated solution would be to incorporate the model and associated data into the new
Data and Analytics Facility for National Infrastructure (DAFNI)!. A potential implementation
would enable a DAFNI user to specify (or select on a map) potential new station locations,
provide the variables required by the underlying models (for example, service frequency or
number of car parking spaces) and then submit a batch job. Forecasts and visualisations,
such as station probabilistic catchments, would then be prepared and the user notified upon
completion. There would also be the potential to approach the problem from an alternative
perspective, with the model asked to identify potential optimum locations for new stations
within a particular area subject to specified criteria. This would be a charged-for service for
non-academic users of DAFNI. Whatever mechanism was adopted, it would be necessary
to regularly re-calibrate the station choice and trip end models to ensure their temporal
transferability, for example by incorporating revised population data and taking into account
new access and egress modes (such as on-demand ride-sharing services and autonomous

vehicles).

'http://www.itrc.org.uk/dafni-data-and-analytics-facility-for-national
-infrastructure/
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9.5 Research limitations and potential solutions

9.5.1 Data-related issues
9.5.1.1 Station facility variables

There is some doubt about the accuracy of information contained in the NRE Knowledgebase
station feed, which was the source of the facilities variables used in the station choice and
trip end models. It was noted in Section 6.7.1 that the staffing level information was not
reliable for stations in England, and the variable was changed in the combined station choice
model. It also appears that the data on car parking, i.e. whether a car park is present and/or
the number of parking spaces, may not be reliable. This became apparent when data was
collated for the appraisal case studies, with Energlyn and Churchill Park station reported
to have no car park, while a review of Google satellite and Street View imagery revealed
an official station car park with approximately 18 spaces. In view of these findings, it is
reasonable to assume that other information relating to station facilities within the NRE
Knowledgebase is either incomplete or incorrect. It would not be practicable to manually
verify this information for every station in Britain, and it would be preferable if a concerted
effort was made by the rail industry to ensure that this information is both accurate and
based on the application of consistent definitions (for example, provision to contact remotely
located staff is not the same as a station having full-time staff). This would be of benefit
to the rail industry generally as the knowledgebase is also used to provide customer-facing
information via the NRE website. The impact of these data quality issues on the station choice
and trip end models is difficult to assess, as the extent of the problem is unknown. However,
assuming that the data is correct for most stations, it is likely that the models would have
performed somewhat better had this data been more accurate. For example, with car parking
spaces being an important driver of trip generation in the trip end model, the number of trip
entries/exits will have been under-predicted for any station where a car park is present but

not recorded as such.

9.5.1.2 OpenTripPlanner edge traversal issue

A problematic issue with using OTP, which was discussed in Section 5.4.1, occurs when the
nearest edge to an origin does not have traversable permissions for motorised vehicles. This
was resolved when deriving the access variables for the station choice models by manually
adjusting the affected origins. However, this was not a feasible solution when the station
access variables needed to be obtained for every postcode in mainland GB. To resolve this
issue, ArcGIS was used with a street network created from the Ordnance Survey Open Roads
dataset. This network was much less sophisticated than that generated by OTP using OSM
data. For example, one-way roads, pedestrianised streets, and turn restrictions were not
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represented. Consequently, the drive distances used to calibrate the station choice models
will have been more realistic than those used when the models were applied, and in some
instances this will have affected identification of the nearest station by distance, the relative
distances to alternative stations, and ultimately the choice probabilities. An alternative
solution would have been to use walk mode to generate the distances. While this would have
generated more realistic distances for stations that are likely to be walked to, by allowing
routing via pedestrian pathways and ignoring restrictions on motorised traffic, the distances
would be less realistic for longer access journeys, for example by not allowing traversal of
motorways. A better long-term solution would be to amend the OTP source code to allow the
option of a walk component at the start or end of a car trip when it is not possible to reach
the origin or destination by motorised vehicle, with the shortest path to/from the nearest

edge traversable by motorised vehicles selected.

9.5.2 Station choice model limitations

9.5.2.1 Revealed preference surveys

The revealed preference surveys used to calibrate the station choice models were obtained
from interviews with rail passengers in Wales and Scotland. While the findings suggest
reasonable transferability of the models between these two regions, it has not been possible
to rigorously assess how well they might predict station choice in England. Attempts were
made at the beginning of the project to obtain survey data from train operating companies
and passenger transport executives operating in England, but this was not successful. Using
the station choice predictor tool described in Section 7.5.3.3, the performance of the station
choice models was assessed for several locations in England based on local knowledge of
the researcher, and the probabilities were considered reasonably realistic for the locations
checked. However, it would be preferable if additional survey data for regions in England
could be obtained and separate choice models calibrated and then compared with the Welsh

and Scottish models.

A potential problem arising from survey respondents being asked at which station they
boarded and would alight from the current train, rather than requesting their ultimate
boarding and alighting station, was discussed in Section 6.4.2.1. To ensure that the ultimate
origin and destination stations were correctly identified, any observations where the access
or egress mode was recorded as ‘another train’ were excluded from the analysis. This should
have limited the observations to direct journeys only, but this was not the case, suggesting
that some passengers did not interpret the question as intended. While this enabled models
to be calibrated that incorporated the number of transfers and waiting time, the estimated
parameters need to be treated with some caution. This limitation does not affect the trip end
model, as it only relates to flow variant station choice models. However, if future work was to

seek to incorporate probabilistic catchments into flow models then ideally new station choice
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models should be calibrated based on surveys that ensure ultimate origin and destination

stations are captured for all indirect train journeys.

9.5.2.2 Access mode

The best performing station choice models calibrated on the WG and LATIS datasets were
those with mode-specific access time parameters. However, as choice of access mode was
not modelled, only a single parameter was estimated in the combined model used to define
probabilistic catchments in the trip end model. This deficiency was offset to an extent by using
a square root transformation of the access distance variable, thus imposing a proportionately
higher disutility on the shorter access journeys that are most likely to be walked. Other
issues remain, such as access by bus not being a realistic or even possible option for some
or all stations in a choice set. However, given that access by bus usually only accounts for
a very small proportion of access journeys (with the notable exception of London), this
may not be a major cause for concern in most cases. The separate models also included a
dummy variable for car as access mode, allowing the impact of certain factors, for example
number of car parking spaces, to only be estimated against those observations where a car
was actually used to access the station. While modelling access mode would allow these
issues to be addressed, the role of car ownership/availability at the individual household level
in determining whether car is a valid access mode choice presents a significant challenge,
which may be more suited to an agent-based modelling approach. This would create a model
of greater complexity that would be more difficult to implement and potentially less likely
to be adopted by transport planners who currently rely on simple implementations of trip

rate/end models to forecast demand for new stations.

9.5.2.3 Spatial correlation

While the inclusion of an accessibility term based on Fotheringham’s CDM was successful in
the combined station choice model, with a negative parameter indicating the presence of a
competition effect, the adjustment made to proportional substitution behaviour in the case
study stations was fairly subtle. It is possible that a combination of both agglomeration and
competition effects is actually present within the data, and although the competition effect
dominates it is correspondingly small. The accessibility term is also a measure of average
proximity of a station to all the other stations in the choice set, when the spatial correlation
between pairs of stations is likely to be more important in obtaining realistic abstraction
effects. Furthermore, this approach precludes the addition of the nearest major station to
each choice set, which would otherwise be desirable given the observed choice behaviour.
Although several promising spatial models were identified, these could not be implemented
as the model forms are not available in either proprietary or open source statistical software.

The potential for future work in this area is considered in Section 9.6 below.



262 Chapter 9 Conclusions

9.5.3 Trip end model limitations

The national trip end model was based on the log-log model calibrated by Blainey (2017), with
the catchment definition component modified to incorporate probabilistic station catchments.
This model was chosen as it is an established model that has been used to forecast demand
for new stations as part of consultancy work for a number of clients, and therefore served as a
robust comparator model. However, given the improved representation of station catchments
in the new model, it is possible that the base model is no longer optimal and variables
that were rejected when that model was calibrated may now be relevant to improving the
model’s predictive performance, and vice versa. In addition, the appraisal of the case study
forecasts discussed in Chapter 8 identified several potential limitations of the trip end model:
trip attraction resulting from tourism; additional trip generation due to an unusually high
proportion of passengers accessing a station by bus; and the impact of competition from
competing modes, in particular when a frequent, reliable and lower-priced bus service is
available. Potential additional variables that could be investigated to address these issues
include: a measure of tourist accommodation within a certain travel distance of a station;
the frequency of bus services serving a station; and the difference in generalised journey
time to the nearest major employment centre by rail compared to bus.

9.6 Programme of future work

It would be a natural extension of the research already completed to develop a national flow
model based on probabilistic station catchments. In a flow model, rather than forecasting total
trips at a station, the number of trips on each flow (OD station pair) is forecast, and previous
work using deterministic catchments has shown that such models have the potential to more
accurately forecast station demand (Blainey & Preston, 2010). Station choice models suitable
for incorporation into a flow model were calibrated as part of this research project, but time
constraints and difficulties obtaining suitable flow data prevented further progress being
made. However, this thesis has shown that including elements of the train leg as predictor
variables in the station choice models (for example, on-train time or number of transfers)
can improve their predictive performance. In turn, this should enable more realistic stations
catchments to be defined, which could ultimately result in a more robust and transferable
flow model. To calibrate such a flow model, information on the number of trips on each flow
would need to be obtained from the LENNON ticketing database, and while this has proved
very difficult to obtain in the past, Transport Scotland has recently indicated their willingness
to provide access to the Scottish data. The methods for incorporating station choice into the
flow models, and for applying the calibrated model to generate demand forecasts, will be
more complex than those already developed for the trip end models. For example, rather
than a postcode having a single choice probability for each alternative station, it would have a

separate probability for each flow for each station; and each station would have a potentially
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different probabilistic catchment for each flow. In addition, there are known deficiencies
with the LENNON data that may be problematic, such as missing trips in travelcard areas

and difficulties accurately assigning trip direction.

The second potential area for future research, is to better address the proportional substitution
behaviour that is a characteristic of the MNL models. Several promising spatial choice
model forms have been identified and these were discussed in Section 3.3.3. However, the
functionality to run them is not present in proprietary or open-source software packages and
it is therefore necessary to define the likelihood function programmatically, using a matrix
programming language such as GAUSS. A possible way forward would be to collaborate with
researchers who have established expertise in this area, and one possibility is to work with
academics based at the University of Toronto who have been exploring spatial choice models
in the context of transit station choice (for example, see Weiss and Habib (2017)) and have

already expressed an interest in carrying out collaborative research.

A final potential area of future work would be to develop a comprehensive API wrapper to
query the OTP route planner, which could be released as an R package. This would build on
the set of functions that were written as part of this research project, preventing duplicated
work amongst the research community and making the functionality available to those who
lack the necessary knowledge, skills or time to develop a solution themselves. This could be

of benefit to researchers worldwide and across disciplines.

9.7 Concluding remarks

The evidence from the empirical models that have been developed, and their practical
application to real-world case studies, supports the conclusion that the aggregate models
used to forecast demand for new local railway stations can be improved, both in terms of their
transferability and predictive performance, by incorporating probabilistic station catchments
derived using station choice models. The trip end model that has been developed is the only
known example of a national-scale aggregate rail demand model to incorporate probabilistic
station catchments. It is also the first to define the catchment zonal unit at such a high
spatial resolution and to be calibrated on a dataset of this size and geographic scope, in that
it incorporates nearly every local station in England, Wales and Scotland. The model has
already been applied commercially to assess proposed new station locations on behalf of a
national government. This serves to highlight its potential role in providing decision makers
with more accurate demand forecasts and guidance on expected abstraction effects, thus
maximising the likelihood that new local railway stations will in future deliver the economic

and societal benefits expected of them.
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R code segments

A.1 OTP API wrapper

—-

# This is a set of functions used to query the OTP API — the beginnings of a comprehensive API wrapper for OTP

2
3 # Load the required libraries
4 library(curl)
5 library(httr)
6 library(jsonlite)
7
8  # otp connect function
9
10 otpConnect <—
11 function(hostname = 'localhost’,
12 router = 'default’,
13 port = '8080"',
14 ssl= 'false')
15 {
16 return (paste(
17 ifelse(ssl == 'true', 'https://', 'http://"),
18 hostname,
19 et
20 port,
21 '/otp/routers/"',
22 router,
23 sep=""
24 ))
25 }
26
27 # Function to return distance for walk, cycle or car — desn't make sense for transit (bus or rail)
28  otpTripDistance <—
29 function(otpcon,
30 from,
31 to,
32 modes)
33 {
34 # convert modes string to uppercase — expected by OTP
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modes <— toupper(modes)
# need to check modes are valid

# setup router URL with [plan
routerUrl <— paste(otpcon, '/plan', sep="")

# Use GET from the httr package to make API call and place in req — returns json by default
req <— GET(routerUrl,
query = list(
fromPlace = from,
toPlace = to,
mode = modes
))
# convert response content into text
text <— content(req, as = "text", encoding = "UTF-8")
# parse text to json
asjson <— jsonlite::fromJSON (text)

# Check for errors — if no error object, continue to process content
if (is.null(asjson$error$id)) {

# set error.id to OK

error.id <— "0OK"

if (modes == "CAR") {

# for car the distance is only recorded in the legs objects. Only one leg should be returned if mode is car and we pick that

— — probably need error check for this
response <—
list(
"errorId" = error.id,
"duration" = asjson$plan$itineraries$legs[[1]]$distance
)
return (response)
# for walk or cycle
} else {
response <—
list("errorId" = error.id,
"duration" = asjson$plan$itineraries$walkDistance)
return (response)
}
} else {
# there is an error — return the error code and message
response <—
list("errorId" = asjson$error$id,
"errorMessage" = asjson$error$msg)
return (response)
}
}

# Function to make an OTP API lookup and return trip time in simple or detailed form. The parameters from, to, modes, date
— and time must be specified in the function call other parameters have defaults set and are optional in the call.

otpTripTime <—
function(otpcon,
from,
to,
modes,
detail = FALSE,
date,
time,
maxWalkDistance = 800,
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{

walkReluctance = 2,
arriveBy = 'false',
transferPenalty = 0,
minTransferTime = 0)

# convert modes string to uppercase — expected by OTP
modes <— toupper(modes)

routerUrl <— paste(otpcon, '/plan', sep="")

# Use GET from the httr package to make API call and place in req — returns json by default. Not using numlitineraries due
— to odd OTP behaviour — if request only 1 itinerary don't necessarily get the top/best itinerary, sometimes a
— suboptimal itinerary is returned. OTP will return default number of itineraries depending on mode. This function
— returns the first of those itineraries.
req <— GET(
routerUrl,
query = list(
fromPlace = from,
toPlace = to,
mode = modes,
date = date,
time = time,
maxWalkDistance = maxWalkDistance,
walkReluctance = walkReluctance,
arriveBy = arriveBy,
transferPenalty = transferPenalty,
minTransferTime = minTransferTime
)
)

# convert response content into text

text <— content(req, as = "text", encoding = "UTF-8")
# parse text to json

asjson <— jsonlite::fromJSON (text)

# Check for errors — if no error object, continue to process content
if (is.null(asjson$error$id)) {
# set error.id to OK
error.id <— "0OK"
# get first itinerary
df <— asjson$plan$itineraries[1,]
# check if need to return detailed response
if (detail == TRUE) {
# need to convert times from epoch format
df$start <—
as.POSIXct(df$startTime / 1000, origin = "1970-01-01")
df$end <—
as.POSIXct(df$endTime / 1000, origin = "1970-01-01")
# create new columns for nicely formatted dates and times
#df$startDate <— format(start.time, "%d—%m—%Y")
#df$startTime <— format(start.time, "%I:%M%p")
#df$endDate <— format(end.time, "%d—%m—%Y")
#df$endTime <— format(end.time, "%I:%M%p")
# subset the dataframe ready to return
ret.df <—
subset(
df,
select = ¢(
'start’,
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'end',

'duration’,

'walkTime',

'transitTime’,

'waitingTime',

'transfers’

)
)

# convert seconds into minutes where applicable
ret.dff, 3:6] <— round(ret.dff, 3:6] / 60, digits = 2)
# rename walkTime column as appropriate — this a mistake in OTP
if (modes == "CAR") {

names(ret.df)[names(ret.df) == 'walkTime'] <— 'driveTime'
} else if (modes == "BICYCLE") {

names(ret.df)[names(ret.df) == 'walkTime'] <— 'cycleTime'
}
response <—

list("errorId" = error.id, "itineraries" = ret.df)
return (response)
} else {
# detail not needed — just return travel time in seconds
response <—
list("errorId" = error.id, "duration" = df$duration)
return (response)
}
} else {
# there is an error — return the error code and message
response <—
list("errorId" = asjson$error$id,
"errorMessage" = asjson$error$msg)
return (response)
}
}

# function to return isochrone (only works correctly for walk and/or transit modes — limitation of OTP)

otplsochrone <—
function(otpcon,
from,
modes,
cutoff,
walkspeed,
batch)
{
# convert modes string to uppercase — expected by OTP
modes <— toupper(modes)

routerUr]l <— paste(otpcon, ' /isochrone',sep="")
# need to check modes are valid

# Use GET from the httr package to make API call and place in req — returns json by default

req <— GET(

routerUrl,

query = list(
fromPlace = from,
mode = modes,
cutoffSec = cutoff,
walkSpeed = walkspeed,
batch = batch
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# convert response content into text
text <— content(req, as = "text", encoding = "UTF-8")

# Check that geojson is returned

if (grepl("\"type\" : \"FeatureCollection\" ", text)) {
status <— "OK"
} else {
status <— "ERROR"
}
response <—
list("status" = status,
"response" = text)
return (response)

}

A.2 Parse NRE Knowledgebase XML feed

# This script parses the ATOC Stations XML Feed to extract information on station services and facilities and then updates a
— PostgreSQL table.

# Load the required libraries
library(curl)

library (httr)

library(XML)

library (RPostgreSQL)

# initialize errors dataframe

errors <— data.frame(crsCode = character(),
statusCode = character(),
bodyEmpty = logical())

# define namespaces vector
ns <—
c¢(x ="http://nationalrail.co.uk/xml/station",y = "http://nationalrail.co.uk/xml/common", z =
— "http://www.govtalk.gov.uk/people/AddressAndPersonalDetails")

# get CRS codes from the full NRE stations xml list. I initially used CRS codes from Naptan, but Naptan does not have all
— stations. Having downloaded the full list it would have been better to parse that. But the code below requests the feed
— for each station individually.

stations_xml <—
xmlParse("C: /PhD/Analysis/r/stations_xml_feed/stations.xml")

allers <—
xmlToDataFrame(getNodeSet(xml_doc, "//x:Station/x:CrsCode", namespaces = ns),
stringsAsFactors = FALSE)

# start loop

for (i in 1:nrowf(allers)) {
# set crs code
# sleep so don't bombard the NRE server
Sys.sleep(2)
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crsCode <— allers$text[i]

# set up the feed URL for current crs code
feedUrl <—
paste("http://internal.nationalrail.co.uk/xml/30/station-",
crsCode,
" xml",
sep =

n ll)

# API calls are made via a cloud server acting as proxy. This is because access to the feed requires registration of a static IP
— address.

# timeout set (in seconds) to prevent R hanging if no response
req <— GET(feedUrl, use_proxy("95.85.54.43", 3128), timeout(10))

# check that staus_code is 200 and content body is not empty

if (req$status_code == 200 && paste(req[6]) != "raw(0)") {
# parse the response
xml <— xmlParse(req)

# initialise list

services <— vector("list", 21)

# set list names

names(services) <—

c(

"crscode",
"name",
"longitude",
"latitude",
"staffinglevel",
"cctv",
"ticketMachine",
"waitingRoom",
"stationBuffet",
"toilets",
"cycleStorage",
"cycleSpaces",
"cycleShelter",
"cycleCctv",
"freeCarPark",
"carSpaces",
"taxiRank",
"busServices",
"metroServices",
"carHire",
"cycleHire"

)
services$crscode <— crsCode

# get staffingLevel — mandatory fullTime, partTime or unstaffed
services$name <—
xpathSApply(xml,
"/x:Station/x:Name",
namespaces = ns,
fun = xmlValue)

# get staffingLevel — mandatory fullTime, partTime or unstaffed
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services$longitude <—
xpathSApply (xml,
"/x:Station/x:Longitude",
namespaces = s,
fun = xmlValue)

# get staffingLevel — mandatory fullTime, partTime or unstaffed
services$latitude <—
xpathSApply (xml,
"/x:Station/x:Latitude",
namespaces = s,
fun = xmlValue)

# get staffingLevel — mandatory fullTime, partTime or unstaffed
services$staffinglevel <—
xpathSApply(
xml,
"/x:Station/x:Staffing/x:Staffinglevel",
namespaces = ns,
fun = xmlValue

)

# get CCTV status — mandatory TRUE or FALSE
services$ectv <—
xpathSApply(
xml,
"/x:Station/x:Staffing/x:ClosedCircuitTelevision/x:0verall",
namespaces = ns,
fun = xmlValue

)

# get ticketMachine status — optional true/false — if tag missing assume false as per schema
xpath <— "/x:Station/x:Fares/x:TicketMachine/x:Available"
if (length(xpathSApply(xml, xpath, namespaces = ns)) > 0) {
services$ticketMachine <—
xpathSApply(xml, xpath, namespaces = ns, fun = xmlValue)
} else {
services$ticketMachine <— "false"

}

# get waitingRoom status — optional can have either available or open tags

# define xpaths

xpath.available <—
"/x:Station/x:StationFacilities/x:WaitingRoom/y:Available"

xpath.open <—
"/x:Station/x:StationFacilities/x:WaitingRoom/y:0pen"

# Check for available tag first — if present get value
if (length(xpathSApply(xml, xpath.available, namespaces = ns)) > 0) {
services$waitingRoom <—
xpathSApply(xml,
xpath.available,
namespaces = s,
fun = xmlValue)
# then check for open tag — if tag present assume there is a waiting room
} else if (length(xpathSApply(xml, xpath.open, namespaces = ns)) > 0) {
services$waitingRoom <— "true"
} else {
services$waitingRoom <— "NA"
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# get stationBuffet status — optional true /false /unknown
xpath <—
"/x:Station/x:StationFacilities/x:StationBuffet/y:Available"
if (length(xpathSApply(xml, xpath, namespaces = ns)) > 0) {
services$stationBuffet <—
xpathSApply(xml, xpath, namespaces = ns, fun = xmlValue)
} else {
services$stationBuffet <— "NA"

}

# get toilets status — optional true/false /unknown
xpath <— "/x:Station/x:StationFacilities/x:Toilets/x:Available"
if (length(xpathSApply(xml, xpath, namespaces = ns)) > 0) {
services$toilets <—
xpathSApply(xml, xpath, namespaces = ns, fun = xmlValue)
} else {
services$toilets <— "NA"

}
# get cycle storage availability — manadatory True/False (InterChange is not manadatory)

xpath <— "/x:Station/x:Interchange/x:CycleStorageAvailability"
# Check if tag exists
if (length(xpathSApply(xml, xpath, namespaces = ns)) > 0) {

# get tag value

services$cycleStorage <—

xpathSApply(xml, xpath, namespaces = ns, fun = xmlValue)

} else {

services$cycleStorage <— "NA"

}
# get cycle storage spaces — optional Integer (number)

xpath <— "/x:Station/x:Interchange/x:CycleStorageSpaces"
# Check if tag exists
if (length(xpathSApply(xml, xpath, namespaces = ns)) > 0) {

# get tag value

services$cycleSpaces <—

xpathSApply(xml, xpath, namespaces = ns, fun = xmlValue)

} else {

services$cycleSpaces <— 0

}
# get cycle storage sheltered — optional yes /partial /no /unknown

xpath <— "/x:Station/x:Interchange/x:CycleStorageSheltered"
# Check if tag exists
if (length(xpathSApply(xml, xpath, namespaces = ns)) > 0) {

# get tag value

services$cycleShelter <—

xpathSApply(xml, xpath, namespaces = ns, fun = xmlValue)

} else {

services$cycleShelter <— "NA"

}

# get cycle CCTV — optional True/False
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xpath <— "/x:Station/x:Interchange/x:CycleStorageCctv"
# Check if tag exists
if (length(xpathSApply(xml, xpath, namespaces = ns)) > 0) {

# get tag value

services$cycleCetv <—

xpathSApply(xml, xpath, namespaces = ns, fun = xmlValue)

} else {

services$cycleCctv <— "NA"

}

# Is a free car park available — Self—closing tag (no content). Existence indicates that there is no charge for using this car
— park at any time.
xpath <— "/x:Station/x:Interchange/x:CarPark/x:Charges/x:Free"
# Check at least one Spaces tag exists
if (length(xpathSApply(xml, xpath, namespaces = ns)) > 0) {
# there is a free car park
services$freeCarPark <— "true"
} else {
services$freeCarPark <— "false"

}

# get total car parking spaces — optional
xpath <— "/x:Station/x:Interchange/x:CarPark/x:Spaces"
# Check at least one Spaces tag exists
if (length(xpathSApply(xml, xpath, namespaces = ns)) > 0) {
#Use Reduce to sum the spaces for all carparks tags
services$carSpaces <—
Reduce(sum, (as.numeric(
xpathSApply(xml, xpath, namespaces = ns, fun = xmlValue)
)
} else {
services$carSpaces <— 0

}

# get Taxi Rank — optional true /false /unknown
xpath <— "/x:Station/x:Interchange/x:TaxiRank/y:Available"
# Check if tag exists
if (length(xpathSApply(xml, xpath, namespaces = ns)) > 0) {

# get tag value

services$taxiRank <—

xpathSApply(xml, xpath, namespaces = ns, fun = xmlValue)

} else {

services$taxiRank <— "NA"

}

# get Bus Services — optional true/false /unknown
xpath <— "/x:Station/x:Interchange/x:BusServices/y:Available"
# Check if tag exists
if (length(xpathSApply(xml, xpath, namespaces = ns)) > 0) {

# get tag value

services$busServices <—

xpathSApply(xml, xpath, namespaces = ns, fun = xmlValue)

} else {

services$busServices <— "NA"

}

# get Metro Services — optional true /false /unknown
xpath <— "/x:Station/x:Interchange/x:MetroServices/y:Available"
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}

# Check if tag exists
if (length(xpathSApply(xml, xpath, namespaces = ns)) > 0) {
# get tag value
services$metroServices <—
xpathSApply(xml, xpath, namespaces = ns, fun = xmlValue)
} else {
services$metroServices <— "NA"

}

# get Car Hire — optional true /false /unknown
xpath <— "/x:Station/x:Interchange/x:CarHire/y:Available"
# Check if tag exists
if (length(xpathSApply(xml, xpath, namespaces = ns)) > 0) {

# get tag value

services$carHire <—

xpathSApply(xml, xpath, namespaces = ns, fun = xmlValue)

} else {

services$carHire <— "NA"

}

# get Cycle Hire — optional true /false /unknown

xpath <— "/x:Station/x:Interchange/x:CycleHire/y:Available"

# Check if tag exists
if (length(xpathSApply(xml, xpath, namespaces = ns)) > 0) {
# get tag value
services$cycleHire <—
xpathSApply(xml, xpath, namespaces = ns, fun = xmlValue)
} else {
services$cycleHire <— "NA"

}

# Write results to database table
dbWriteTable(
conn = con,
name = c¢('data', 'stations'),
data.frame(services),
append = TRUE,
row.names = FALSE

} else {
# response code was not 200, write details to errors dataframe
newRow <—
data.frame(
crsCode = crsCode,
statusCode = req$status_code,
bodyEmpty = isTRUE(paste(req[6]) == "raw(0)")

)
errors <— rbind(errors, newRow)
}
# end the loop
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A.3 Querying brfares.com API to obtain fares

Example for LATIS dataset.

# load libraries

-

2 library(httr)
3 library(jsonlite)
4 library(stringr)
5
6 # Create dataframe of unique origin:destination stations identified by CRS code
7 fares_lookup <—
8 unique(latis_alternatives_main[c("alternative", "destcrs")])
9
10 # initialize errors dataframe
11 errors <— data.frame(
12 id = integer(),
13 correctOrig = character(),
14 correctDest = character(),
15 correctRlc = character(),
16 noFares = character()
17 )
18
19 total <— nrow(fares_lookup)
20
21 for (i in 1:total) {

22 # set values

23 originCrs <— fares_lookup$alternative[i] # is the alternative
24 destCrs <— fares_lookup$destcrs[i]

25

26 # set up the feed URL

27 feedUrl <—

28 paste("http://api.brfares.com/queryextra?orig=",
29 originCrs,

30 "&dest=",

31 destCrs,

32 sep =

33 "

34

35 # make API call, using gzip encoding

36 req <— GET(feedUrl, config(accept_encoding = "gzip"))
37

38 # convert response content into text

39 text <— content(req, as = "text")

40

41 # convert from JSON to list of R objects
42 asRlist <— fromJSON (text)

43

44 # Check that the api call response is valid
45 if (asRlist$correct$orig == TRUE &&

46 asRlist$correct$dest == TRUE &&

47 asRlist$correct$rlc == TRUE &&

48 lis.null(asRlist$fares$adult$fare)) {

49 # Extract the values of interest

50 fareCategory <— asRlist$fares$category$desc
51 routeCode <— asRlist$fares$route$code

52 routeName <— asRlist$fares$route$name

53 ticketCode <— asRlist$fares$ticket$code



276 Appendix A R code segments

54 ticketName <— asRlist$fares$ticket$name
55 restrictionCode <— asRlist$fares$restriction$code
56 adultFare <— asRlist$fares$adult$fare

57

58 # Create ticket dataframe

59 dfTickets <—

60 data.frame(

61 fareCategory,

62 routeCode,

63 routeName,

64 ticketCode,

65 ticketName,

66 restrictionCode,

67 "adultFare" = adultFare /

68 100,

69 stringsAsFactors = FALSE

70 )

71

72 # Subset the ticket dataframe to WALKUP fares only
73 dfTickets <— dfTickets[dfTickets$fareCategory == "WALKUP",]

74

75 # Subset to off—peak returns

76 dfOffPeak <—

77 dfTickets[ dfTickets$ticketCode == "CDR" |
78 dfTickets$ticketCode == "SVR" |
79 dfTickets$ticketCode == "BFR" |
80 dfTickets$ticketCode == "G2R" |
81 dfTickets$ticketCode == "SMG",]
82

83 # Subset to anytime returns

84 dfAnytime <—

85 dfTickets[dfTickets$ticketCode == "SDR" |
86 dfTickets$ticketCode == "SOR" |
87 dfTickets$ticketCode == "GOR" |
88 dfTickets$ticketCode == "GTR",]
89

90 # Extract fares — need to take minimum as alternative routes may be possible
91

92 # get off—peak fare — use CDR if available, otherwise ...
93 if (nrow(dfOffPeak) > 0) {

94 if ("CDR" %in% dfOffPeak$ticketCode) {

95 idx <— which.min(dfOffPeak$adultFare[ dfOffPeak$ticketCode == "CDR"])
9 offpeakReturn <— dfOffPeak$adultFare[idx]

97 offpeakRestriction <— dfOffPeak$restrictionCode[idx]
98 } else {

99 idx <— which.min(dfOffPeak$adultFare)

100 offpeakReturn <— dfOffPeak$adultFare[idx]

101 offpeakRestriction <— dfOffPeak$restrictionCode[idx]
102 }

103 } else {

104 offpeakReturn <— "NULL"

105 offpeakRestriction <— "NULL"

106 }

107

108 # get anytime fare — use SDR if available, otherwise ...

109 if (nrow(dfAnytime) > 0) {

110 if ("SDR" %in% dfAnytime$ticketCode) {

111 idx <—

112 which.min(dfAnytime$adultFare[ dfAnytime$ticketCode == "SDR"])
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anytimeReturn <— dfAnytime$adultFare[idx]

anytimeRestriction <— dfAnytime$restrictionCode[idx]

} else {
idx <— which.min(dfAnytime$adultFare)
anytimeReturn <— dfAnytime$adultFare[idx]

anytimeRestriction <— dfAnytime$restrictionCode[idx]

}

} else {
anytimeReturn <— "NULL"
anytimeRestriction <— "NULL"

# now update the fares_lookup dataframe

fares_lookup[i, "offpeakfare"] <— offpeakReturn

fares_lookup[i, "offpeakrestriction"] <—
str_trim(offpeakRestriction)

fares_lookup[i, "anytimefare"] <— anytimeReturn

fares_lookup[i, "anytimerestriction"] <—
str_trim(anytimeRestriction)

} else {

# there is a problem with the api call response — record errors in errors dataframe for later review

newRow <—
data.frame(
id =1,
correctOrig = asRlist$correct$orig,
correctDest = asRlist$correct$dest,
correctRlc = asRlist$correct$ric,
nofares = paste(is.null(asRlist$fares$adult$fare))
)
errors <— rbind(errors, newRow)
}
}

A.4 Retrieving address matches from AddressBase

# Do addressbase search for each unique posttown, excluding where posttown is "unknown"

for (posttown in sort(unique(add2015chk$Origin.posttown[add2015chk$Origin.posttown != "unknown"])))

{
# set up temp table and index
query <—
paste(

"create temp table tmp as (select \"POSTCODE\", postcode_count, max_d_2ct, ST_X
— (ST_Transform (stpc_cent_geom, 4326))as stpc_cent_X, ST_Y (ST_Transform
— (stpc_cent_geom, 4326))as stpc_cent_Y, full_text_address, address_short from
— addressbase where \"POST TOWN\" = '",

posttown,

|||)||

>

sep=""
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)
dbGetQuery(con, query)

# create gin index on full_text_address field

#
query <—
paste(
"CREATE INDEX idx_tmp_trgm ON tmp USING gin (full_text_address COLLATE
— pg_catalog.\"default\" gin_trgm_ops)"
sep=""
)

dbGetQuery(con, query)

# create gin index on short address field
query <—
paste(
"CREATE INDEX idx_tmp_trgm2 ON tmp USING gin (address_short COLLATE
— pg_catalog.\"default\" gin_trgm_ops)"
;ep =""

)
dbGetQuery(con, query)

# run search
for (id in add2015chk$ID[add2015chk$Origin.posttown == posttown]) {
query <—
paste(
"SELECT \"POSTCODE\", postcode_count, max_d_2ct, stpc_cent_X, stpc_cent_ Y,
— full_text_address as address, similarity(full_text_address, '"

>

add2015chk$O0rigin_full address[add2015chk$ID == id]

>

"') FROM tmp WHERE full_text_address %ot

>

add2015chk$Origin_full_address[add2015chk$ID == id]
"' UNION SELECT \"POSTCODE\", postcode_count, max_d_2ct, stpc_cent_X, stpc_cent_Y,
— address_short as address, similarity(address_short, '

add2015chk$Origin_full address[add2015chk$ID == id]

>

"') FROM tmp WHERE address_short % '"

>

add2015chk$O0rigin_full address[add2015chk$ID == id]

>

"' ORDER BY similarity DESC LIMIT 4"
Sep = nn

)
result <— dbGetQuery(con, query)

# Save results

# check first that we have some results — check nrows not null
if (nrow(result) > 0) {

# loop through the results

for (r in 1:nrow(result)) {

# set variables
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sim <— paste('M',r, '.s',sep="")
addr <— paste('M',r, '.add',sep="")
pc <— paste('M',r, '.pc',sep="")

pent <— paste('M',r, '.pcnt',sep="")
maxd2ct <— paste('M', r, ' .maxd2ct',sep="")
stpcc <— paste('M', r, ' .stpcc',sep="")

add2015chk[[sim]][add2015chk$ID == id] <—
round(result[r, "similarity"], 2)
add2015chk[[addr]][add2015chk$ID == id] <—
result[r, "address"]
add2015chk[[pc]][add2015chk$ID == id] <—
result[r, "POSTCODE" ]
add2015chk[[pent]][add2015chk$ID == id] <—
result[r, "postcode_count"]
add2015chk[[maxd2ct]][add2015chk$ID == id] <—
result[r, "max_d_2ct"]
add2015chk[[stpee]][add2015¢hk$ID == id] <—
paste(round(result[r, "stpc_cent_y"], 5), ", ", round(result[r, "stpc_cent_x"], 5), sep =

" II)

# drop temp table (and index?)

query <—
paste ("drop table tmp")
dbGetQuery(con, query)

A.5 Creating observed station catchments

This example is for the LATIS dataset.

# get distinct list of origin stations in the dataset
queryl <—
paste("SELECT DISTINCT origincrs FROM latis.survey_val",sep="")
queryl <— gsub(pattern = '\\s"',
replacement =" ",
x = queryl)
df <— dbGetQuery(con, queryl)

# loop through each origin station and create a temporary table to hold distinct origin postcodes for that station and then
— create a polygon linking the postcode centroids and write to database. Polygon created using ST ConcaveHull function
— set at 0.99 target percent

# Note: need at least 3 records for each station to build a catchment
for (i in 1:nrow(df)) {

query2 <—
paste(
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"CREATE TEMP TABLE catchment AS
SELECT DISTINCT ON (originlatlong) originlatlong, origincrs, id, origin_geom
FROM latis.survey_val

where origincrs = '",

dffi, 1],

"' ORDER BY originlatlong",

sep =

wn
)
query2 <— gsub(pattern = '\\s',

replacement =" ",
X = query2)

dbGetQuery(con, query2)

# check there are at least 3 points in the temp table — pgr_pointsASPolygon needs at least 3

count_rows <— dbGetQuery(con, "select count() from catchment")

if (count_rows > 2) {

query3 <—
paste(
"INSERT INTO latis.catchment_allorigins_polygons (origin_geom, origincrs)

VALUES (
(select ST_ConcaveHull(ST_Collect(origin_geom), 0.99)
from catchment),
(SELECT origincrs from catchment LIMIT 1)
) n

query3 <— gsub(pattern = '\\s',
replacement =" ",
X = query3)
dbGetQuery(con, query3)
}
# drop the temp table
dbGetQuery(con, "DROP TABLE catchment")

}

A.6 Station catchments that each unit-level postcode intersects

# Step 1: get the set of postcode polygons that intersect the station catchments produced above and create a table. Use distinct
— otherwise will get multiple postcodes because of intesection with different catchments

query <—
paste(
"create table latis.pc_in_obs_catchments as (
select distinct(a.postcode), a.geom
from data.postcode_polygons as a, latis.catchment_allorigins_polygons as b
where ST_Intersects(a.geom, b.origin_geom_gb) and a.geom is not null

)ll’

sep=""

)

query <— gsub(pattern = '\\s',
replacement =" ",
X = query)

dbGetQuery(con, query)
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# Step 2: Create a station catchment count field for the postcodes in latis.pc_in_obs_catchments

query <—
paste("ALTER TABLE latis.pc_in_obs_catchments ADD COLUMN in_catchments integer",
sep="")
query <— gsub(pattern = '\\s',
replacement =" ",
X = query)

dbGetQuery(con, query)

# Step 3: generate the catchment count

query <—
paste(
"with tmp2 as (

with tmp as(
SELECT a.postcode, count(b.origincrs)
FROM latis.pc_in_obs_catchments as a
LEFT JOIN latis.catchment_allorigins_polygons as b
ON ST_Intersects(a.geom,b.origin_geom_gb)
group by b.origincrs, a.postcode
)
select postcode, count() from tmp
group by postcode)
Update latis.pc_in_obs_catchments as c
set in_catchments = tmp2.count

from tmp2
where c.postcode = tmp2.postcode",
sep=""
)
query <— gsub(pattern = '\\s',
replacement =" ",
X = query)

dbGetQuery(con, query)
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B.1 AddressBase

B.1.1 Generate postcode_count field

ALTER TABLE addressbase
ADD COLUMN postcode_count SMALLINT;

WITH tmp2 AS (
WITH tmp AS (
SELECT
DISTINCT ON ("POST_TOWN", "DEPENDENT_THOROUGHFARE", "THOROUGHFARE",
— "DOUBLE_DEPENDENT_LOCALITY", "DEPENDENT_LOCALITY", "POSTCODE")
"POST_TOWN",
"DEPENDENT _THOROUGHFARE",
"THOROUGHFARE",
"DOUBLE_DEPENDENT_LOCALITY",
"DEPENDENT _LOCALITY",
"POSTCODE"
FROM data.addressbase
WHERE "THOROUGHFARE" <> ''")
SELECT
"POST_TOWN",
"DEPENDENT_THOROUGHFARE",
"THOROUGHFARE",
"DOUBLE_DEPENDENT_LOCALITY",
"DEPENDENT_LOCALITY",
count()
FROM tmp
GROUP BY "POST_TOWN", "DEPENDENT_THOROUGHFARE", "THOROUGHFARE", "DOUBLE_DEPENDENT_LOCALITY",
— "DEPENDENT_LOCALITY")
UPDATE data.addressbase
SET postcode_count = tmp2.count
FROM tmp2
WHERE data.addressbase."POST_TOWN" = tmp2."POST_TOWN"
AND data.addressbase."DEPENDENT_THOROUGHFARE" = tmp2."DEPENDENT_THOROUGHFARE"
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AND data.addressbase." THOROUGHFARE" = tmp2."THOROUGHFARE"
AND data.addressbase."DOUBLE_DEPENDENT _LOCALITY" = tmp2."DOUBLE_DEPENDENT_LOCALITY"
AND data.addressbase."DEPENDENT_LOCALITY" = tmp2."DEPENDENT_LOCALITY";

B.1.2 Generate stpc_cent_geon field

ALTER TABLE addressbase
ADD COLUMN stpc_cent_geom GEOMETRY (Point, 27700);

WITH tmp2 AS (
WITH tmp AS (
SELECT
DISTINCT ON ("POST_TOWN", "DEPENDENT_THOROUGHFARE", "THOROUGHFARE",
< "DOUBLE_DEPENDENT_LOCALITY", "DEPENDENT_LOCALITY", "POSTCODE")
"POST_TOWN",
"DEPENDENT_THOROUGHFARE",
"THOROUGHFARE",
"DOUBLE_DEPENDENT_LOCALITY",
"DEPENDENT _LOCALITY",
"POSTCODE",
b.the_geom
FROM data.addressbase AS a
LEFT JOIN data.onspd_nov_2015 AS b
ON a."POSTCODE" = b.pcds
WHERE "THOROUGHFARE" <> '")
SELECT
"POST_TOWN",
"DEPENDENT_THOROUGHFARE",
"THOROUGHFARE",
"DOUBLE_DEPENDENT_LOCALITY",
"DEPENDENT_LOCALITY",
st_centroid(st_collect(the_geom)) AS geom
FROM tmp
GROUP BY "POST_TOWN", "DEPENDENT_THOROUGHFARE", "THOROUGHFARE", "DOUBLE_DEPENDENT_LOCALITY",
— "DEPENDENT_LOCALITY")
UPDATE data.addressbase
SET stpc_cent_geom = tmp2.geom
FROM tmp2
WHERE data.addressbase."POST_TOWN" = tmp2."POST_TOWN"
AND data.addressbase."DEPENDENT_THORQUGHFARE" = tmp2."DEPENDENT _THOROUGHFARE"
AND data.addressbase." THOROUGHFARE" = tmp2."THOROUGHFARE"
AND data.addressbase."DOUBLE_DEPENDENT _LOCALITY" = tmp2."DOUBLE_DEPENDENT_LOCALITY"
AND data.addressbase."DEPENDENT _LOCALITY" = tmp2."DEPENDENT_LOCALITY";

B.1.3 Generate max_d_2ct field

ALTER TABLE data.addressbase
ADD COLUMN max_d_2ct INTEGER;

WITH tmp2 AS (
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WITH tmp AS (

SELECT

DISTINCT ON ("POST_TOWN", "DEPENDENT_THOROUGHFARE", "THOROUGHFARE",
< "DOUBLE_DEPENDENT_LOCALITY", "DEPENDENT_LOCALITY", "POSTCODE")

"POST_TOWN",
"DEPENDENT_THOROUGHFARE",
"THOROUGHFARE",
"DOUBLE_DEPENDENT _LOCALITY",
"DEPENDENT_LOCALITY",
"POSTCODE",
stpc_cent_geom,
b.the_geom
FROM data.addressbase AS a
LEFT JOIN data.onspd_nov_2015 AS b
ON a."POSTCODE" = b.pcds
WHERE "THOROUGHFARE" <> ''")

SELECT

"POST_TOWN",
"DEPENDENT_THOROUGHFARE",
"THOROUGHFARE",
"DOUBLE_DEPENDENT_LOCALITY",
"DEPENDENT_LOCALITY",

round(ST_MaxDistance(st_collect(the geom), st_collect(stpc_cent_geom))) AS dist

FROM tmp
GROUP BY "POST_TOWN", "DEPENDENT_THOROUGHFARE", "THOROUGHFARE", "DOUBLE_DEPENDENT_LOCALITY",

— "DEPENDENT_LOCALITY")

UPDATE data.addressbase
SET max_d_2ct = tmp2.dist
FROM tmp2

—-

WHERE data.addressbase."POST_TOWN" = tmp2."POST_TOWN"
AND data.addressbase."DEPENDENT_THOROUGHFARE" = tmp2."DEPENDENT_THOROUGHFARE"
AND data.addressbase." THOROUGHFARE" = tmp2." THOROUGHFARE"
AND data.addressbase."DOUBLE_DEPENDENT_LOCALITY" = tmp2."DOUBLE_DEPENDENT_LOCALITY"
AND data.addressbase."DEPENDENT_LOCALITY" = tmp2."DEPENDENT_LOCALITY";

B.2 Station daily train frequency

This query calculates train frequency for a particular day — in this example, 25 November

2013. Based on information provided in Zervaas (2014).

WITH tmp AS (
SELECT
t.,
st.
FROM gtfs2013.stop_times AS st, gtfs2013.trips AS t
WHERE st.stop_id IN (SELECT stop_id
FROM gtfs2013.stops

TR L %, I N U R N

= e
N o~ O

i!

WHERE parent_station="",

") AND st.trip_id = t.trip_id

AND t.service_id IN (SELECT service_id
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FROM gtfs2013.calendar
WHERE start_date <= '2013-11-25' AND end_date >= '2013-11-25"
AND monday = 1)
)
SELECT count()
FROM tmp

B.3 Procedural code block to identify station pairs

DO
$do$
DECLARE pc CHARACTER VARYING;
BEGIN
—— loop through each postcode in the probability table
FOR pc IN SELECT DISTINCT postcode
FROM demandmodels.pc_probs_n10_cmb
LOOP
—— we will insert the possible station pairs for this postcode into a table called station_pairs
INSERT INTO demandmodels.station_pairs (j, i)
WITH a AS (
SELECT i
—— unnest the array (tmp). This creates a CTE table (i) of one column containing the crs codes for this postcode
FROM unnest(array(
—— Use CTE to create table tmp which is an array of the station CRS codes for this postcode
WITH tmp AS (
SELECT array_agg(crscode)
OVER (
PARTITION BY postcode )
FROM demandmodels.pc_probs n10 cmb
WHERE postcode = pc)
SELECT DISTINCT array_agg
FROM tmp)) AS s(i)
)
—— select unique stations pairs for this postcode from CTE table (i) by using a cross join
SELECT
a.iASj,
b.iASi
FROM
a
CROSS JOIN a AS b
WHERE
a<b
ORDER BY a, b;
END LOOP;
END
$do$;

—— create a new table just containing the distinct station pairs
CREATE TABLE demandmodels.unique_stn_pairs AS
SELECT DISTINCT
Js
i
FROM demandmodels.station_pairs
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B.4 Procedural code block to calculate accessibility term

DO
$do$
DECLARE
pc CHARACTER VARYING;
r  INTEGER :=1;
this_alt CHARACTER VARYING;
BEGIN
—— loop through each record in probability table
FOR r IN SELECT id
FROM demandmodels.pc_probs_n10_cmb
ORDER BY id
LOOP
—— populate variables related to this record
SELECT INTO pc, this_alt
postcode,
crscode
FROM demandmodels.pc_probs n10_cmb
WHERE id =r1;
—— use Common Table Expression to select the other stations for this pc along with relevant category weightings and station
— pair distances
WITH cdm AS (
SELECT
a.id,
a.crscode,
a.category,
b.fxd_entsexits,
c.distance
FROM demandmodels.pc_probs_ n10_cmb AS a
LEFT JOIN demandmodels.cat_weights AS b
ON a.category = b.category
LEFT JOIN demandmodels.station_pair_distance AS ¢
ON (a.crscode = c.i AND this_alt = c.j) OR (a.crscode = c.j AND this_alt = c.i)
WHERE postcode = pc AND crscode <> this_alt)
—— calculate the accessibility term using select query on the CTE table and update the table
UPDATE demandmodels.pc_probs_n10_cmb
SET fxdwact = (SELECT round(cast(avg(fxd_entsexits / distance) AS NUMERIC), 4)

FROM cdm)
WHERE id =,
END LOOP;
END
$do$;

B.5 Station catchment queries

B.5.1 Simple catchment

In this example, the simple unweighted catchment population for Honiton station (CRS code
is ‘HON) is retrieved from the probability table.
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SELECT sum(b.population)
FROM demandmodels.pc_nearest 15 stations AS a LEFT JOIN data.pc_pop _2011_clean AS b ON a.postcode = b.postcode
WHERE crscode = 'HON' AND distance_rank = 1

B.5.2 Simple weighted catchment

In this example, the simple catchment population weighted by the decay function for Honiton
station (CRS code is ‘HON’) is retrieved from the probability table.

WITH nw_pop AS (
SELECT
—— first part of query does not apply decay function for postcodes within 750m of the station
sum(population)
FROM demandmodels.pc_nearest_15_stations AS A
LEFT JOIN data.pc_pop_2011_clean AS b ON a.postcode = b.postcode
WHERE crscode = 'HON'
—— we only include those postcodes where 'HON' is the nearest station
AND distance_rank = 1 AND total dist / 1000 <= 0.75
), w_pop AS (
SELECT
—— second part of query applies the decay function for postcodes > 750m from the station
sum(population power(((total_dist / 1000) + 1), —1.5212))
FROM demandmodels.pc_nearest 15 stations AS a
LEFT JOIN data.pc_pop_2011 clean AS b ON a.postcode = b.postcode
WHERE crscode = 'HON'
—— we only include those postcodes where 'HON' is the nearest station
AND distance_rank = 1 AND total_dist / 1000 > 0.75
)
—— use COALESCE function to set population sum to zero if query result was null
SELECT round (COALESCE(nw_pop.sum, 0) + COALESCE(w_pop.sum, 0)) AS w_pop
FROM nw_pop, w_pop

B.5.3 Probabilistic catchment

In this example, the probabilistic catchment population (with two-stage decay function
applied) for Honiton station (CRS code is ‘HON’) is retrieved from the probability table.

WITH nw_pop AS (
SELECT
—— first part of query weights population only by probability where distance from postcode to station is within 750m
sum(c.tel9_prob b.population)
FROM demandmodels.pc_nearest 15 stations AS a
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LEFT JOIN data.pc_pop_2011 clean AS b ON a.postcode = b.postcode
LEFT JOIN demandmodels.pc_probs n10 cmb AS ¢ ON a.postcode = c.postcode AND a.crscode = c.crscode
WHERE distance_rank < 11 AND a.crscode = 'HON' AND total_dist / 1000 <= 0.75
), w_pop AS (
SELECT
—— second part of query weights population by probability and the decay function where distance from postcode to station
— is > 750m
sum(c.te19 prob b.population power(((total dist / 1000) + 1), —1.5212))
FROM demandmodels.pc_nearest 15 stations AS a
LEFT JOIN data.pc_pop_2011_clean AS b ON a.postcode = b.postcode
LEFT JOIN demandmodels.pc_probs_n10 _cmb AS c ON a.postcode = c.postcode AND a.crscode = c.crscode
WHERE distance_rank < 11 AND a.crscode = 'HON' AND total dist / 1000 > 0.75
)
SELECT round (COALESCE(nw_pop.sum, 0) + COALESCE(w_pop.sum, 0)) AS w_pop
FROM nw_pop, w_pop
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Station demand forecasts for Wales:
report to the Welsh Government
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client confidentiality.
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Appendix D

Miscellaneous

D.1 Trip-end models

D.1.1 Travelcard boundary stations

Category E and F stations identified as travelcard boundary stations are shown in Table D.1.

D.1.2 Assigned categories

Categories that were assigned to stations (opened prior to January 2012) with no official
category designation are shown in Table D.2.

D.1.3 Station ticketing groups

The fares feed dated 10 January 2017 was downloaded from http://data.atoc.org/
data-download. Information about station groups is contained in the file RIFAF359.L0C
(or similarly named file). The station groups are located at the top of this file, prior to
other groups, for example bus groups. Group entries begin RG. The first 7 digits after
RG is the group code. The rest of file can then be searched to find the stations that are
part of this group. These are the RM entries. So, for example, the Bicester NTH/VIL
group entries is: RG7079340311229992807201528072015BICESTER NTH/VIL; which
has the group ID: 7079340. The group members are: RM7079340311229997030480BCS
and RM7079340311229997031040BIT (CRS codes BCS and BIT). More information can
be found in the ‘RJIS Datafeeds Interface Specification for Fares and Associated Data’ PDF
document provided with the feed download. The station groups for non-London stations are
shown in Table D.3, and for London stations in Table D.4.
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CRS code Station name Category Travelcard Region
APB Appley Bridge F1 Greater Manchester
BLK Blackrod F1 Greater Manchester
BMC Bromley Cross E Greater Manchester
BML Bramhall E Greater Manchester
BYN Bryn F1 Greater Manchester
GLZ Glazebrook E Greater Manchester
GNF Greenfield E Greater Manchester
HAL Hale E Greater Manchester
HDG Heald Green E Greater Manchester
LTL Littleborough F2 Greater Manchester
MDL Middlewood F2 Greater Manchester
ORR Orrell F1 Greater Manchester
PAT Patricroft F2 Greater Manchester
SRN Strines F2 Greater Manchester
CWH Crews Hill F2 London

ELS Elstree & Borehamwood E London

ENL Enfield Lock E London

EWE Ewell East E London

HDW Hadley Wood E London

HTE Hatch End E London

KCK Knockholt E London

SGR Slade Green E London

TUR Turkey Street E London

WDT West Drayton E London

WRU West Ruislip F1 London

ELP Ellesmere Port E Merseyrail

GSW Garswood E Merseyrail

HGN Hough Green E Merseyrail

HSW Heswall F2 Merseyrail

MEC Meols Cop F2 Merseyrail

NLW Newton-Le-Willows E Merseyrail

RNF Rainford F2 Merseyrail

DRT Darton F1 South & West Yorkshire
MRP Moorthorpe F1 South & West Yorkshire
SES South Elmsall F1 South & West Yorkshire
DBD Denby Dale F1 South Yorkshire
DOR Dore & Totley F2 South Yorkshire
KvP Kiveton Park F2 South Yorkshire
TNN Thorne North E South Yorkshire
TNS Thorne South F2 South Yorkshire
BPT Bishopton E Strathclyde

BRR Barrhead E Strathclyde

CAC Caldercruix F2 Strathclyde

CRF Carfin F Strathclyde

CRO Croy E Strathclyde

CUB Cumbernauld E Strathclyde

DLR Dalreoch E Strathclyde

HLY Holytown F Strathclyde

MIN Milliken Park F Strathclyde

BLO Blaydon F2 Tyne & Wear

BKT Blake Street E West Midlands
BWN Bloxwich North F2 West Midlands
DDG Dorridge E West Midlands
EWD Earlswood F2 West Midlands

LOB Longbridge E West Midlands
HBD Hebden Bridge E West Yorkshire

HRS Horsforth F1 West Yorkshire
KNO Knottingley F1 West Yorkshire

MIK Micklefield F1 West Yorkshire
MSN Marsden F1 West Yorkshire

SON Steeton & Silsden F1 West Yorkshire
WDN Walsden F2 West Yorkshire

TABLE D.1: Category E and F stations identified as travelcard boundary stations, by travelcard
region.

D.1.4 Stations excluded from unit postcode choice sets

The stations that were excluded when the choice sets were defined for every unit postcode in

mainland GB are shown in Table D.5.



Appendix D Miscellaneous 317

CRS code Station name Staffing level Entries/exits Assumed Comment
2015/16 category
(million)
ALO Alloa unstaffed 0.4 F
AMR Amersham fullTime 2.3 C
BSV Buckshaw Parkway partTime 0.3 D
ZCW Canada Water unstaffed 23.7 B Assume staffed (LO)
CFO Chalfont & Latimer fullTime 0.8 C
CLW Chorleywood fullTime 0.5 D
DLJ Dalston Junction unstaffed 5.1 C Assume staffed (LO)
DUN Dunbar partTime 0.5 D
GFD Greenford fullTime 0.3 D
HGG Haggerston unstaffed 3.2 C Assume staffed (LO)
HOH Harrow-On-The-Hill fullTime 2.4 C
HAF Heathrow Terminal 4 fullTime n/a n/a
HWV Heathrow Terminal 5 fullTime n/a n/a
HXX Heathrow Terminals 1-3 fullTime n/a n/a
HOX Hoxton unstaffed 3 C Assume staffed (LO)
MCE Metrocentre unstaffed 0.4 F
OKE Okehampton unstaffed 0.003 F
RIL Rice Lane fullTime 0.3 D
RIC Rickmansworth fullTime 1.1 C
ROE Rotherhithe unstaffed 1.7 C Assume staffed (LO)
SMC Sampford Courtenay unstaffed 0 F
SDE Shadwell unstaffed 5 C Assume staffed (LO)
SDC Shoreditch High Street unstaffed 8 C Assume staffed (LO)
SIA Southend Airport fullTime 0.4 D
SFA Stratford International fullTime 1.6 C
SQE Surrey Quays unstaffed 4.2 C Assume staffed (LO)
TNA Thornton Abbey unstaffed 0.001 F
WPE Wapping unstaffed 2.5 C Assume staffed (LO)
ZIW Whitechapel unstaffed 14 B Assume staffed (LO)

Notes: London Overground (LO)

TABLE D.2: Categories that were assigned to stations (opened prior to 1 January 2012) with
no official category designation, based on staffing level and stations entries/exits.
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StationGroupName

GroupMembers

CRScode

RG7002540311229991005201204052012COLCHESTERSTNS
RG7002580311229993010201430102014CATFORDSTATIONS
RG7002590311229993010201430102014EDENBRIDGESTNS
RG7002600311229991311201411112014FARNBOROUGHSTNS
RG7002620311229993010201430102014PENGESTATIONS
RG7002630311229991207201219052012ENFIELDCHSE/TWN
RG7002650311229992702201327022013WHAMPSTEADSTNS
RG7002680311229992702201327022013PONTEFRACTSTNS
RG7002710311229992702201327022013THORNESTATIONS
RG7004030311229992702201327022013READINGSTATIONS
RG7004040311229992702201327022013HELENSBURGHSTNS
RG7004100311229991005201203052012BEDFORDSTATIONS
RG7004110311229991005201204052012SOUTHENDSTNS
RG7004130311229992702201327022013HERTFORDSTNS
RG7004150311229991903201319032013GAINSBOROUGH

RG7004160311229991311201411112014DORKINGSTATIONS

RG7004180311229991903201319032013BIRMINGHAMSTNS

RG7004240311229992702201327022013BRADFORDYKSTNS
RG7004280311229991209201311092013CANTERBURYSTNS
RG7004290311229991311201411112014DORCHESTERSTNS
RG7004310311229991311199713111997FALKIRKSTATIONS
RG7004320311229991209201311092013FOLKESTONESTNS
RG7004330311229990608199806081998GLASGOWCEN/QST

RG7004350311229992702201327022013LIVERPOOLSTNS

RG7004370311229991209201311092013MAIDSTONESTNS

RG7004380311229992702201327022013MANCHESTERSTNS

RG7004400311229991311201411112014PORTSMOUTHSTNS
RG7004410311229991903201319032013NEWARKSTATIONS
RG7004430311229991311199713111997TYNDRUMSTATIONS
RG7004440311229991903201319032013WAKEFIELDSTNS
RG7004450311229992702201327022013WARRINGTONSTNS
RG7004460311229992702201327022013WIGANSTATIONS
RG7004470311229991903201319032013WORCESTERSTNS
RG7004490311229993010201430102014CROYDONSTATIONS
RG7017800311229992909199909091999BOOTLESTATIONS
RG7074680311229990302200027012000TILBURYSTATIONS

RG7079340311229992807201528072015BICESTERNTH/VIL!

RM7002540311229997068530CET
RM7002540311229997068610COL
RM7002580311229997050470CFB
RM7002580311229997050770CTF
RM7002590311229997053590EBT
RM7002590311229997054730EBR
RM7002600311229997055210FNB
RM7002600311229997056880FNN
RM7002620311229997050720PNE
RM7002620311229997053780PNW
RM7002630311229997060100ENC
RM7002630311229997069590ENF
RM7002650311229997014210WHD
RM7002650311229997015250WHP
RM7002680311229997085400PFR
RM7002680311229997085480PFM
RM7002710311229997065300TNN
RM7002710311229997065310TNS
RM7004030311229997031490RDG
RM7004030311229997031600RDW
RM7004040311229997099810HLC
RM7004040311229997099820HLU
RM7004100311229997015100BSJ
RM7004100311229997015120BDM
RM7004110311229997074200SOV
RM7004110311229997074560SOC
RM7004130311229997060850HFN
RM7004130311229997068180HFE
RM7004150311229997064240GBL
RM7004150311229997064650GNB
RM7004160311229997052970DKT
RM7004160311229997053570DKG
RM7004160311229997054120DPD
RM7004180311229997010060BSW
RM7004180311229997011270BHM
RM7004180311229997045150BMO
RM7004240311229997083450BDI
RM7004240311229997083460BDQ
RM7004280311229997050070CBW
RM7004280311229997051640CBE
RM7004290311229997059610DCH
RM7004290311229997059620DCW
RM7004310311229997099300FKG
RM7004310311229997099310FKK
RM7004320311229997050270FKW
RM7004320311229997050350FKC
RM7004330311229997098130GLC
RM7004330311229997099500GLQ
RM7004350311229997022260MRF
RM7004350311229997022420LVC
RM7004350311229997022440LV.J
RM7004350311229997022460LIV
RM7004370311229997051150MDE
RM7004370311229997052220MDW
RM7004370311229997052370MDB
RM7004380311229997029630DGT
RM7004380311229997029660MCO
RM7004380311229997029680MAN
RM7004380311229997029700MCV
RM7004400311229997055370PMS
RM7004400311229997055400PMH
RM7004410311229997064980NCT
RM7004410311229997064990NNG
RM7004430311229997087280TYL
RM7004430311229997088380UTY
RM7004440311229997085840WKK
RM7004440311229997085910WKF
RM7004450311229997023840WBQ
RM7004450311229997023900WAC
RM7004460311229997023630WGN
RM7004460311229997024060WGW
RM7004470311229997048910WOS
RM7004470311229997048930WOF
RM7004490311229997053550ECR
RM7004490311229997054110WCY
RM7017800311229997021950BNW
RM7017800311229997022390BOT
RM7074680311229997074610TBR
RM7074680311229997074620TIL
RM7079340311229997030480BCS
RM7079340311229997031040BIT

CET
COoL
CFB
CTF
EBT
EBR
FNB
FNN
PNE
PNW
ENC
ENF
WHD
WHP
PFR
PFM
TNN
TNS
RDG
RDW
HLC
HLU
BSJ
BDM
SOV
SOC

HFE
GBL
GNB
DKT
DKG
DPD
BSW
BHM
BMO
BDI
BDQ
CBW
CBE
DCH
DCW
FKG
FKK
FKW
FKC
GLC
GLQ
MRF
VC
vJ
LIV
MDE
MDW
MDB
DGT
MCO
MAN
MCV
PMS
PMH
NCT
NNG

WKK
WKF

WAC
WGN
WGW
WOos
WOF
ECR

BNW
BOT
TBR
TIL
BCS
BIT

Notes: BICESTERNTH/VIL is the most recently created group, dating from 28 July 2015.

TABLE D.3: Station groups and group stations (not London).
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StationGroupName

GroupMembers

CRScode

RG7010720311229990104200001042000LONDONTERMINALS

RG7044520311229990101199118112016LONDONTHAMESLNK

RM7010720311229997014440EUS
RM7010720311229997014750MYB
RM7010720311229997015550STP
RM7010720311229997030870PAD
RM7010720311229997051120BFR
RM7010720311229997051430CHX
RM7010720311229997051480LBG
RM7010720311229997054260VIC
RM7010720311229997055980WAT
RM7010720311229997061210KGX
RM7010720311229997069650LST
RM7010720311229997074900FST
RM7044520311229997005770ZFD
RM7044520311229997015550STP
RM7044520311229997051120BFR
RM7044520311229997051210CTK
RM7044520311229997051480LBG
RM7044520311229997052460EPH

EUS
MYB
STP
PAD
BFR
CHX
LBG
VIC
WAT
KGX
LST
FST
ZFD
STP
BFR
CTK
LBG
EPH

TABLE D.4: Station groups and group stations (London).
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Station
Name Crscode  Reason for exclusion
Altnabreac ABC No access by road (forestry tracks only)
Bordesley BBS No weekday service
Brading BDN Isle of Wight
Brigg BGG No weekday service
Barlaston BRT No weekday service
Buckenham (Norfolk) BUC No weekday service
Berney Arms BYA Access via long countryside walk
Corrour CRR No access by road (forestry tracks only)
Dunrobin Castle DNO No weekday service
Denton DTN No weekday service
Falls Of Cruachan FOC No weekday service
Gainsborough Central GNB No weekday service
Heathrow Express HAF Serves airport only!
Heysham Port HHB No weekday service
Heathrow Express HWV Serves airport only?
Heathrow Express HXX Serves airport only!
Kirton Lindsey KTL No weekday service
Lakenheath LAK No weekday service
Lake LKE Isle of Wight
Lympstone Commando LYC No public access
Manchester United Football Ground ~ MUF No weekday service
Norton Bridge NTB No weekday service
Okehampton OKE No weekday service
Pilning PIL No weekday service
Redcar British Steel RBS No public access
Reddish South RDS No weekday service
Ryde Esplanade RYD Isle of Wight
Ryde Pier Head RYP Isle of Wight
Ryde St Johns Road RYR Isle of Wight
Smallbrook Junction SAB Isle of Wight
Sandown SAN Isle of Wight
Shanklin SHN Isle of Wight
Sampford Courtenay SMC No weekday service
Stanlow & Thornton SNT No public access
Tees-Side Airport TEA No weekday service
Wedgwood WED No weekday service

Note: !These stations have an atypical ‘catchment’, and are not a viable origin
station choice in most circumstances.

TABLE D.5: Stations excluded from unit postcode choice sets.
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