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1. INTRODUCTION 

1.1. Background 

The railway in Britain has experienced considerable growth in recent years. 

Over the last ten years alone, total passenger journeys have increased by 51% 

(an additional 584 million journeys) (ORR, 2017), 61 new stations have opened, 

and several new lines have been built (Railfuture, 2017). This growth looks set 

to continue, with new lines and stations currently under construction or planned, 

and campaigns being run nationwide by communities eager to be connected to 

the rail network (Campaign for Better Transport, 2017). However, there are 

concerns about the accuracy of the station demand forecasts that are used to 

determine the viability of proposed new schemes. A report commissioned by 

the UK Government to investigate the issue, compared forecast and observed 

demand at 23 newly opened stations. It found that forecast demand was above 

or below observed demand by a margin of more than 20% in 14 cases, including 

an under-prediction in excess of 100% at three stations (Steer Davies Gleave, 

2010). More recently, the demand forecast for the new Borders Railway line in 

Scotland was described as a ‘shocking failure’, after usage figures revealed that 

passenger trips in the first year of operation were up to eight times higher than 

forecast for three of the new stations, and lower than predicted for the other 

four (Campaign for Borders Rail, 2016). Inaccurate forecasts can have 

potentially serious consequences. Under-prediction might lead to the 

unnecessary rejection of a proposal on the grounds of the perceived benefit-

cost ratio, or to the inadequate provision of station and network infrastructure. 

Conversely, over-prediction, or not adequately accounting for abstraction from 

existing stations, could result in a new station that fails to deliver the expected 

economic and societal benefits. 

1.2. The station catchment problem 

Although the UK Department for Transport has published some general 

guidance for those carrying out or commissioning demand forecasts for new 

local railway stations (DfT, 2011), the models used are usually developed for, 

and applied to, a specific local context. In most cases trip-rate or trip-end 
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models are adopted, as was the case in two-thirds of the stations/lines 

considered in the Steer Davies Gleave report. Trip-rate models assume the 

number of trips to be some function of the population in the area surrounding a 

station (its catchment), while trip-end models include additional variables 

relating to station services, facilities or the locality. The research summarised 

in this paper builds upon previous work by Blainey (2010) and Blainey and 

Preston (2013) to develop national trip-end models suitable for general 

application in forecasting demand for new local rail stations in England and 

Wales. A weakness of this work, in common with trip-end models generally, lies 

in how the station catchments are defined. Two methods are typically used; 

either a distance- or time-based buffer is placed around the station, or the study 

area is divided into zones and each zone is assigned to its nearest station. The 

latter was the method adopted by Blainey (2010), with census output areas 

used as the zonal units. Both approaches produce discrete non-overlapping 

catchments which imply that station choice is a deterministic process (anyone 

within a zone will always use the same station) and that stations do not compete 

with one another. However, analysis of passenger survey data reveals that 

station catchments are far more complex entities. Figure 1 shows approximate 

catchments for stations in Scotland, created by computing the polygon that 

encompasses the observed origin postcode2 of passengers using each station; 

with the choropleth indicating the number of station catchments that each 

postcode intersects1. This reveals substantial overlapping of catchments and 

confirms that station choice is not deterministic, even when small-scale origin 

zonal units are used.  

This research seeks to address the problem by allocating a set of alternative 

stations to each unit-level postcode and then using station choice models to 

calculate the probability of each of these stations being chosen. Zonal 

population can then be apportioned to each station based on these 

probabilities, thereby creating probabilistic catchments. In addition, by using full 

postcodes as the zonal unit, the station catchments are defined at a much 

higher spatial resolution than in previous work. If station catchments are not 

correctly defined, then inappropriate weight will be given to other model 

variables, such as service quality measures, as drivers of trip generation, rather 

than the catchment population. By defining more realistic catchments, the 

parameter estimates will be more robust, and the models will be more 

transferable (Wardman and Whelan, 1999). 
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Figure 1: Approximate observed station catchments generated from Scottish passenger 
survey data, with each postcode classified to show the number of station catchments that it 
intersects. Basemap is © openstreetmap.org contributors 

 

1.3. Previous research 

While there is a substantive body of prior station choice research (see Young 

and Blainey (2017b) for a comprehensive review), relatively little attention has 

been given to how station choice models can be used to improve rail demand 

models. There are two notable exceptions. The most refined methodology is 

probably that proposed by Lythgoe and Wardman (2002, 2004), where station 

choice is an intrinsic component of a flow model3, with a station’s generation 

potential represented by the population within 40km allocated to a grid of zones. 

However, this approach was intended to forecast demand for parkway stations 

and is limited to modelling inter-urban journeys greater than 80km 

(subsequently reduced to 40km by Lythgoe et al. (2004)). The only research to 

adopt a similar approach to that taken in this paper, is the work of Wardman 

and Whelan (1999). They attempted to incorporate probability-based station 

catchments into a flow model by apportioning the population of postal sectors4 

to one of five competing stations. However, due to time and computer resource 

constraints they had to use a subset of the flow data, which resulted in the 

model failing to converge. They recommended further work, noting that they 

had ‘seriously underestimated the complexity of [the] task and the computing 

and time resources required’. However, this approach has not been revisited 
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since, despite the considerable advances in computing power over the past two 

decades. 

In the next section the paper will outline the models that have been developed 

to generate station choice probabilities. The methodology used to calibrate trip-

end models for local stations in GB, using both deterministic and probabilistic 

catchments, is then described and the calibration results presented. Both model 

variants are then used to forecast demand for several recently opened 

individual stations, and for a set of stations on a newly constructed line. 

Forecast demand is then compared with observed demand and, where 

information is available, with the forecast made as part of the scheme appraisal 

process. 

2. STATION CHOICE MODEL CALIBRATION 

As this paper is primarily concerned with the integration of station choice 

models into trip-end models, only a brief overview of the station choice models 

will be given here, concentrating on modifications made to the models since 

earlier work. Full details about data preparation and validation, derivation of 

variables and the modelling approach adopted can be found in Young and 

Blainey (2017a). Multinomial logit (MNL) models of station choice were 

developed using revealed preference data obtained from on-train passenger 

surveys carried out in Wales and Scotland during 2014 and 2015. Models were 

calibrated using the combined dataset of 14,422 observations (choice 

situations) from both the Welsh and Scottish surveys. The full unit postcode 

was taken as the trip origin, and the choice set was defined as the ten nearest 

stations by drive distance to each postcode. In the previous work, mode-specific 

parameters for access time were found to yield the best performing models. 

However, as choice of access mode is not being modelled, the square root of 

access distance has been included in the new models. This was found to 

perform better than an untransformed or log-transformed variable, and was 

superior to time-based access variables. A range of explanatory variables were 

tested using a manual forward selection procedure, and the best performing 

model was SC1, where the probability of individual n at origin i choosing station 

k from a choice set of K alternative stations, is given by the following formula: 

𝑃𝑟𝑛𝑖𝑘 =
exp⁡(𝑁𝑘

𝛽
+√𝐷𝑖𝑘

𝛾
+ 𝑈𝑘

𝛿 + 𝑙𝑛𝐹𝑘
𝜁
+ 𝐶𝑘

𝜂
+ 𝑃𝑘

𝜄 + 𝑇𝑘
𝜅 + 𝐵𝑘

𝜆)

∑ (
𝐾

𝑘=1
exp⁡(𝑁𝑘

𝛽
+√𝐷𝑖𝑘

𝛾
+ 𝑈𝑘

𝛿 + 𝑙𝑛𝐹𝑘
𝜁
+ 𝐶𝑘

𝜂
+ 𝑃𝑘

𝜄 + 𝑇𝑘
𝜅 + 𝐵𝑘

𝜆))
(1) 
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where D is the access distance by road from origin i to station k; F is the daily 

service frequency at station k; P is the number of car parking spaces at station 

k; N, U, C, T and B are dummy variables that take the value of 1 if station i is 

the nearest station, unstaffed, has CCTV, has a ticket machine, or has a bus 

interchange respectively, and zero otherwise; and β, γ, δ, ζ, η, ι, κ and λ are 

parameters to be estimated. The results from calibrating this model are 

summarised in Table 1. 

2.1. The spatial choice problem 

Due to the underlying assumptions of the MNL model, it exhibits proportional 

substitution behaviour (a consequence of the independence of irrelevant 

alternatives (IIA) property). This means that when a new alternative is added to 

a choice set the probability of each of the existing alternatives will be reduced 

by the same proportion. However, it is a reasonable assumption that stations 

that are closer to each other in space will be better substitutes for one another 

than stations that are further apart. A new station would be expected to abstract 

proportionately more passengers from a station closer to it than one further 

away. A potential mechanism to address this issue is to incorporate a measure 

of the accessibility of each alternative to all other alternatives within a choice 

set. This ‘accessibility term’ is often a Hansen-type measure, where the 

distance between alternatives is weighted by a size-based attraction variable. 

As the term includes information from other alternatives the IIA property no 

longer holds and the model can capture competition (or agglomeration) effects. 

Examples include Fotheringham’s competing destinations model (CDM) (see 

Pellegrini and Fotheringham (2002) for a review); and a recent application to 

account for spatial competition in workplace choice models (Ho and Hensher, 

2016). To assess the potential of this approach, the following form of the 

accessibility term, as proposed by Fotheringham, was tested: 

𝐴𝑛𝑖 = (
1

𝑀 − 1
∑

𝑊𝑘

𝑑𝑗𝑘
𝑘
𝑘≠𝑗

)

𝛩

(2) 

where M is the total number of alternatives for individual n at origin i, W is a 

weight, d is the distance from alternative j to alternative k, and θ is a parameter 

to be estimated. As A increases an alternative is closer to more ‘attractive’ 

alternatives. Fotheringham states that the CDM can be derived, and under 

certain circumstances be consistent with random utility theory, simply by 

included the accessibility term in the utility function (Fotheringham, 1986). If θ 
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< 0 then alternatives that are more isolated will have a higher probability of 

being chosen (competition effect), but if θ > 0 then alternatives closer together 

will have a higher probability of being chosen (agglomeration effect). Two 

variants of the accessibility term were tested. In the first (model SC2), the 

weight was defined as the total number of entries and exits at the station in 

2014/15. As this figure will be unknown for a proposed new station, a second 

model (SC3) was estimated using a fixed weight for each station category, 

based on thresholds specified in the category definitions (see Annex C in Green 

and Hall (2009)), as shown in Table 2. The logarithmic transformation of the 

accessibility term was added to the models, as suggested by Fotheringham, 

with the model form becoming: 

𝑃𝑟𝑛𝑖𝑘 =
exp⁡(𝑁𝑘

𝛽
+√𝐷𝑖𝑘

𝛾
+ 𝑈𝑘

𝛿 + 𝑙𝑛𝐹𝑘
𝜁
+ 𝐶𝑘

𝜂
+ 𝑃𝑘

𝜄 + 𝑇𝑘
𝜅 + 𝐵𝑘

𝜆 + 𝑙𝑛𝐴𝑘
𝜇
)

∑ (
𝐾

𝑘=1
exp⁡(𝑁𝑘

𝛽
+√𝐷𝑖𝑘

𝛾
+ 𝑈𝑘

𝛿 + 𝑙𝑛𝐹𝑘
𝜁
+ 𝐶𝑘

𝜂
+ 𝑃𝑘

𝜄 + 𝑇𝑘
𝜅 + 𝐵𝑘

𝜆 + 𝑙𝑛𝐴𝑘
𝜇
))

(3) 

where A is the accessibility term, and μ the associated parameter to be 

estimated. 

The results, shown in Table 1, indicate that models SC2 and SC3, incorporating 

the accessibility term, perform better than SC1. They have lower AIC values, 

and the AIC weights indicate a high probability that they are the better models. 

The parameter for the accessibility term is negative and significant in both 

models, indicating that there is a competition effect at play. The estimated 

parameter is very similar in the two models, suggesting that the fixed weight is 

a suitable proxy for the actual number of entries and exits. As the trip-end 

models are only intended to predict Category E or F stations, the appropriate 

weight will be known for any proposed new station (given that category F 

stations are unstaffed). 

3. INTEGRATING TRIP-END AND STATION CHOICE MODELS 

Previous research carried out at the University of Southampton Transportation 

Research Group has successfully developed linear regression models to 

forecast the number of trips made to/from local railway stations in England and 

Wales (Blainey, 2010). Station catchments were defined by allocating 2001 

census output areas in England and Wales to their nearest station by road 

distance and applying a distance decay function to the population associated 

with each output area, reflecting the expectation that the number of trips 

generated by the population of an output area will fall as the distance from the 
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station increases. The best models were found to explain over 75% of variation 

in the observed data, and to better predict actual demand on the Ebbw Vale  

Table1: Station choice model calibration results 

  Model SC1 Model SC2 Model SC3 
 

No accessibility term 
 

Accessibility term with 
trip entries/exits as 
weighting 

 
Accessibility term using 
fixed weighting for 
each station category 

Variable B z Sig   B z Sig   B z Sig 

Nearest station (y/n) 0.6907 18.44 *** 
 

0.6855 18.25 *** 
 

0.6908 18.41 *** 

√(access distance) -2.2618 -56.31 *** 
 

-2.2675 -56.35 *** 
 

-2.2652 -56.39 *** 

Unstaffed (y/n) -0.6767 -16.01 *** 
 

-0.6522 -15.26 *** 
 

-0.6383 -14.53 *** 

ln(daily frequency) 1.1986 34.57 *** 
 

1.2100 34.74 *** 
 

1.2145 34.63 *** 

CCTV (y/n) 1.0708 8.59 *** 
 

1.0539 8.44 *** 
 

1.0760 8.63 *** 

Car park spaces (no.) 0.0013 16.48 *** 
 

0.0011 9.59 *** 
 

0.0012 13.67 *** 

Ticket machine (y/n) 0.9839 19.08 *** 
 

0.9758 18.91 *** 
 

0.9633 18.57 *** 

Bus interchange (y/n) 0.7585 13.61 *** 
 

0.7346 13.08 *** 
 

0.7308 12.95 *** 

ln(accessibility term) 
    

-0.1314 -3.66 *** 
 

-0.1413 -3.22 *** 
      

McFadden's adjusted R2 0.71 
 

0.71 
 

0.71 

AIC 19317.70 
 

19306.20 
 

19309.30 

Delta AIC 11.50 
 

0.00 
 

3.10 

Akaike weight 0.00   0.82   0.17 

 
 
Table 2: Fixed weights for each main station category, used in the accessibility term 

Station category Weight 
(entries/exits) 

A 2,000,000  

B 2,000,000  

C 1,000,000  

D 500,000  

E 250,000  

F 125,000  

 

branch line (which opened in 2008) than the methods used in the feasibility 

study carried out prior to scheme approval. As part of consultancy work carried 

out for the Welsh Government, the models were later re-calibrated using more 

recent data, including output area population from the 2011 census and station 

entries and exits (the basis of the dependent variable) from 2011/12 (Blainey, 

2017). These models have been taken as the starting point for developing new 

trip-end models that incorporate probability-based catchments derived using 

the station choice models described in Section 2. The new models extend the 

earlier work in several key respects. Firstly, they are calibrated for stations in 



                                                                              
                                                                                                        

8 

 

the whole of GB, and not restricted to England and Wales. Secondly, unit 

postcodes are used to define catchment zones rather than census output areas; 

providing a much higher spatial resolution to the population data (there are 

some 1.5 million postcodes covering GB, compared to less than 0.25 million 

output areas). Thirdly, rather than assigning the population of each zone to its 

nearest station, the population is allocated to each station in a zone's choice 

set based on the probability that each station will be chosen, thus defining a 

probabilistic catchment. 

3.1. Model formulation 

The model form using simple (deterministic) catchments, as proposed by 

Blainey and Preston (2013), is as follows: 

ln 𝑉𝑖̂ = 𝛼 + (ln∑𝑃𝑧

𝑍

𝑧

𝑤𝑧)

𝛽

+ 𝑙𝑛𝐹𝑖
𝛾
+ 𝑙𝑛𝑇𝑖

𝜁
+ 𝑙𝑛𝐽𝑖𝑡

𝜂
+ 𝑙𝑛𝑃𝑘𝑖

𝜄 + 𝑇𝑒𝑖
𝜅 + 𝐸𝑙𝑖

𝜈 + 𝐵𝑖
𝜏 (4) 

where V̂i is the estimated annual passenger entries and exits for station i; Pz is 

the resident population of zone z; Z is all zones where the closest station by car 

travel time is station i; wz is a decay function; Fi is weekday train frequency at 

station i; Ti is distance in km from station i to the nearest Category A-D station; 

Jit is the number of jobs within a t minute drive of station i, Pk is the number of 

parking spaces at station i; and Tei, Eli and Bi are dummy variables that take 

the value of 1 if station i is a terminus station, served by electric trains or a 

travelcard boundary station respectively, and zero otherwise; and α, β, γ, ζ, η, 

ι, κ, ν, and τ are parameters to be estimated. 

To incorporate probabilistic station catchments, the model shown in Equation 4 

can be amended to the following form: 

ln 𝑉𝑖̂ = 𝛼 + (ln∑𝑃𝑟𝑧𝑖𝑃𝑧

𝑍

𝑧

𝑤𝑧𝑖)

𝛽

+ 𝑙𝑛𝐹𝑖
𝛾
+ 𝑙𝑛𝐽𝑖𝑡

𝜂
+ 𝑙𝑛𝑃𝑘𝑖

𝜄 + 𝑇𝑒𝑖
𝜅 + 𝐸𝑙𝑖

𝜈 + 𝐵𝑖
𝜏 (5) 

where Przi is the probability of an individual located in zone z choosing station 

i; Z now consists of all zones which have station i within their choice set; and 

lnTi has been removed. lnTi was added to try and capture potential competition 

effects of nearby large stations, something that should now be captured by the 

station choice component. This is the proposed general form of the model, with 

the nature of the zone being defined by the researcher. In the case of the 

models reported here, the zone is defined as the unit postcode.  
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An analysis of access trips from the passenger survey data indicated that a two-

stage distance- or time-based decay function would be appropriate, with no 

decay for access journeys ≤ 0.75km or ≤ two-minutes. A power function (slope 

-1.5212) and an exponential function (slope -0.2432) gave the best fit for access 

distance and access time data respectively. The distance-based decay function 

wzi, is therefore given by: 

𝑤𝑧𝑖 = {(𝑑 + 1)−1.5212

1
if 𝑑 > 0.75
otherwise

(6) 

where d is the road distance in km from zone z to station i; and the time-based 

function is given by: 

𝑤𝑧𝑖 = {𝑒
(−.2432×𝑡)

1
if 𝑡 > 2

otherwise
(7) 

where t is road travel time in minutes from zone z to station i.  

3.2. Generating station choice probabilities 

In order to generate the station choice probabilities (Przi in equation 5), it is 

necessary to first define a station choice set for every unit postcode in GB 

(mainland only). Then, for each choice set, the probability of each station being 

chosen needs to be calculated. The unit postcode represents the spatial level 

at which resident population will be weighted, both by the decay function and 

the calculated choice probabilities, before being allocated to each station in the 

trip-end model. 

An OD cost matrix analysis was run in ArcGIS to identify the 10 nearest stations 

(the destinations) to each postcode (the origins). Only stations that were in 

operation during 2011 were included, to correspond with the date of the census 

and the 2011/12 station usage data from the Office of Rail and Road (ORR). 

Any stations considered inaccessible to typical passengers (either on private 

property or some distance from the public road network), with no weekday 

service5, or located on the Isle of Wight were excluded. As ArcGIS failed to 

successfully complete an OD cost matrix analysis with all the origins loaded 

(some 1.45 million), the analysis was run in seven batches of approximately 

200,000 origins. The data was exported into DBF format, and processed in R. 

A probability table was then created in a PostgreSQL database, consisting of 

ten rows for each postcode, one for each of the ten stations, along with predictor 

variables pulled in from other database tables. For each table row, the 

exponentiated measured utility was then calculated using the estimated 
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parameters from each station choice model and written to new columns. Using 

window functions (with records partitioned by postcode), the sum of measured 

utility for each choice set, and the probability of each station within a choice set 

being chosen, were calculated and written to new columns.  

3.3. Model calibration 

In line with the earlier work, the calibration dataset was defined as those railway 

stations assigned to Network Rail categories E and F. For stations in England 

and Wales, the categories were obtained from a recent review of stations 

commissioned by the Department for Transport (Green and Hall, 2009). As no 

official source of the categories could be identified for stations in Scotland, an 

internal source was used. Any station opened after these lists were compiled 

was manually reviewed and allocated to a category based on the descriptions 

contained in Green and Hall (2009). 

Only stations that had been open for the entirety of financial year 2011/12 were 

included in the dataset. This was the reporting period used by the ORR when 

compiling the total number of station entries and exits from ticketing data, the 

dependent variable used in the models (ORR, 2013). Stations were removed 

from the dataset if they had no weekday service, restricted public access, or 

were located on the Isle of Wight. For ticketing purposes some stations are 

grouped under a single common location, allowing passengers to travel to or 

from any station in a group using the same ticket. As the usage data for 

individual stations in each group is estimated and likely to be unreliable, they 

were also removed. The final calibration dataset consisted of 1792 stations. 

The same predictor variables as those found to perform best in the previous 

work by Blainey and Preston (2013) were used to calibrate the trip-end models. 

These are summarised, with brief details about their source and derivation, in 

Table 3. 

3.4. Model Results 

Initial calibration runs established that assigning each postcode to its nearest 

station by road distance, rather than by drive-time, produced the best 

deterministic catchment models; while the distance-based decay function was 

preferred over the time-based function for both the deterministic and 

probabilistic catchments. In addition, workplace population within a one minute 

drive of the station was found to perform better than the other thresholds. 
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Table 4 shows the results of four models: TE1 uses a simple catchment with 

the population of each postcode assigned to its nearest station; TE2 is the same 

as TE1 but applies the distance decay function; TE3 uses a probabilistic 

catchment with postcode population weighted by station choice probabilities 

(using SC1) and the distance-decay function; TE4 is the same as TE3 but uses 

SC3 (with the accessibility term) to derive the probabilities.  

All the models fit the data very well, with TE4 the best fitting model (adjusted R2 

= 0.8506). TE4 has the lowest AIC, and the AIC weights indicate a 98% 

probability that TE4 is the best of the four models. Turning to the parameter 

estimates, it is apparent that the population parameter is larger in models TE3 

and TE4, while the daily frequency and terminus dummy parameters are 

smaller. This suggests that too much weight is being given to station service 

quality and characteristic in models TE1 and TE2, due to inadequacies in the 

catchment definition. It appears that models TE3 and TE4 can better account 

for differences in station usage that are explained by station catchments and 

their generation potential, and as a consequence should be more robust and 

transferable. 

4. MODEL APPLICATION AND APPRAISAL 

4.1. Methodology 

In order to investigate the predictive performance of the integrated trip-end and 

station choice models, and assess whether probabilistic catchments produce 

more accurate estimates of station demand, it was first necessary to develop a 

methodology for generating the station choice and trip-end model inputs under 

the changed circumstances that result from a new station or new line being 

introduced. A crucial component is the procedure for redefining the set of 

alternative stations available at each unit postcode, so that any new stations 

appear as available choices when appropriate. It would not be practical to 

regenerate the nearest 10 stations for every postcode in GB, each time a new 

station needed to be modelled. Analysis of passenger survey data revealed that 

only a very small number (0.6%) of station access journeys exceed 60 minutes, 

irrespective of the chosen access mode. It was therefore decided that for any 

new station the ‘area of interest’ could be limited to those unit postcodes within 

60 minutes’ drive time. The nearest 10 stations, from the universal set that now 

includes the proposed new station(s), to each of these postcodes can then be 

generated. Any postcodes which do not include the new station(s) amongst the 

nearest 10 can then be discarded, as they will have will no influence on the 
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catchment definition. This reduces the amount of computing overhead involved 

in populating the probability database table and deriving variables (such as the 

accessibility term). The key steps involved in the proposed methodology are 

illustrated in Figure 2. 

Table 3: Summary of predictor variables used in trip-end models 

Predictor 
variable 

Description Data source Derivation 

Resident 
population 

(no.) 

Population at unit-level 
postcode 

2011 census. E&W: 
NOMIS, S: Scotland's 
Census. 

 

Workplace 
population 

(no.) 

Residents (16-74) in 
employment within x 
minutes of the station by 
road network 

Workplace zones 
(E&W, NOMIS); output 
areas (Scotland, 
Scotland’s Census) 

Service area analysis (1,2,3 
and 4 minutes) and spatial 
join in ArcGIS 

Daily service 
frequency 

(no.) 

No. of trains on typical 
weekday 

GB train schedule 
(GTFS format) 

Imported into PostgreSQL, 
then a SQL query 

Nearest 
Category A-D 

station (km) 

Nearest Category A,B,C 
or D station by road 
network 

NAPTAN OD cost matrix analysis in 
ArcGIS 

Car park 
spaces (no.) 

Number of car park 
spaces at station 

NRE Knowledgebase 
XML feed 

Parsed in R 

Electric 
services (y/n) 

Whether station is 
served by electric trains 

GB train schedule 
(GTFS) 

Adjusted to take account of 
schemes since 2011/12 

Travelcard 
boundary 

(y/n) 

Whether station is at the 
boundary of a city or 
regional travelcard 
scheme 

Schemes identified for: 
Strathclyde, London, 
West Midlands, 
Merseyside, Greater 
Manchester, West 
Yorkshire, Tyne & 
Wear, and South 
Yorkshire 

Various web sites 

Terminus (y/n) Whether a station is at 
the end of a line 

Previous work by 
Blainey (2010) 

Updated for Scottish 
stations and new stations 
with reference to rail maps 

Accessibility 
term 

See section 2.1  Distances between station 
pairs measured using an 
OpenTripPlanner instance. 
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Table 4: Results of trip-end model calibrations 

  TE1 TE2 TE3 TE4 
 

Population assigned to 
nearest station (by 
distance) 

 
Population assigned to 
nearest station (by 
distance); distance decay 
function 

 
Population probability-
weighted; distance decay 
function 

 
Population probability-
weighted; distance decay 
function; accessibility 
term 

Variable B t-value Sig   B t-value Sig   B t-value Sig   B t-value Sig 

Intercept 2.58  14.37  *** 
 

2.37  13.53  *** 
 

3.67  38.50  *** 
 

3.65 38.30 *** 

ln(population)^ 0.23  15.06  *** 
 

0.34  17.30  *** 
 

0.37  20.14  *** 
 

0.37 20.38 *** 

ln(daily train frequency) 1.43  50.90  *** 
 

1.36  48.40  *** 
 

1.14  41.47  *** 
 

1.13 41.21 *** 

ln(dist. to Cat A-D station) 0.15  6.20  *** 
 

0.21  8.64  *** 
        

ln(work pop. 1 min)^ 0.09  13.48  *** 
 

0.06  7.66  *** 
 

0.05  7.75  *** 
 

0.05 7.70 *** 

ln(car park spaces)^ 0.13  13.43  *** 
 

0.15  15.44  *** 
 

0.13  14.14  *** 
 

0.13 14.07 *** 

Electric services 0.20  4.61  *** 
 

0.22  5.09  *** 
 

0.24  5.93  *** 
 

0.24 5.97 *** 

Travelcard boundary 0.31  3.30  *** 
 

0.30  3.26  ** 
 

0.30  3.29  ** 
 

0.30 3.26 ** 

Terminus 0.90  10.31  *** 
 

0.86  10.03  *** 
 

0.78  9.37  *** 
 

0.78 9.34 *** 
        

McFadden's adjusted R2 0.8378 
 

0.8434 
 

0.8500 
 

0.8506 

AIC 3911.7690 
 

3848.2150 
 

3770.2630 
 

3762.5480 

Delta AIC 149.2210 
 

85.6670 
 

7.7150 
 

0.0000 

Akaike weight 0.0000   0.0000   0.0207   0.9793 

Notes:  ^log(variable + 1) used due to presence of zero values 
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4.2. Demand predictions 

The methodology was initially applied to forecast demand for three new stations 

that opened in 2012 (Fishguard & Goodwick) and 2013 (Conon Bridge and 

Energlyn & Churchill Park). The forecasts obtained using the three trip-end 

models (TE2, TE3 and TE4) are shown in Table 5, along with actual station 

usage data for 2015/16. All three models produced an accurate forecast for 

Energlyn & Churchill Park, within +/- 2% of actual trips. While the probabilistic 

models under-forecast demand by 18% at Fishguard & Goodwick, this 

represents a 10 percentage-point adjustment (in the desired direction) 

compared to the deterministic catchment model. All the models over-forecast 

demand at Conon Bridge, by around 60%, although this is more accurate than 

the original project forecast of 36,000 trips (Railfuture, 2017). These initial 

findings, while not conclusive, suggest that probabilistic catchments have the 

potential to adjust, and correct, forecasts produced using simple catchments. 

Figure 2: Methodology for generating demand forecast for new stations 
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Table 5: Demand forecasts for three new stations and comparison with actual trips in 2015/16 

Station Weighted 
catchment 
pop. TE2 

Weighted 
catchment 
pop. TE3 

Weighted 
catchment 
pop. TE4 

ORR trips 
2015/16 

TE2 trip 
forecast 

% diff 
from 
15/16 

TE3 trip 
forecast 

% diff 
from 
15/16 

TE4 trip 
forecast 

% diff 
from 
15/16 

Conon Bridge (opened Feb. 2013) 1249 859 856 15276 24453 60 25091 64 25090 64 

Energlyn & Churchill (opened Dec 2013) 3864 1183 1180 74206 73015 -2 75467 2 75329 2 

Fishguard & Goodwick (opened May 2012) 1992 1429 1416 19946 14345 -28 16317 -18 16387 -18 

 

Table 6: Demand forecast for Borders Railway (new stations only) and comparison with actual trip data in 2016/17 

  Weighted catchment 
population 

  Actual trips   Trip forecasts   

Station TE2 TE3 TE4   First year 
from 
opening 

Lennon 
data^ 
2016/17 

  Final 
business 
case 
forecast 

% diff 
from 
16/17 

Simple 
catchment 
(TE2) 

% diff 
from 
16/17 

Probability-
based 
catchment 
(TE3) 

Probability-
based 
catchment 
(TE4) 

% diff 
from 
16/17 

Tweedbank 2476 2015 2010 
 

337864 474000 
 

43242 -91 806146 70 485965 481432 2 

Galashiels 4737 3742 3749 
 

201666 342000 
 

46862 -86 200381 -41 146705 147335 -57 

Stow 700 476 478 
 

48282 66000 
 

11686 -82 96263 46 67705 67136 2 

Gorebridge 3189 2182 2198 
 

74891 93000 
 

180038 94 254489 174 204831 204737 120 

Newtonrange 3538 2204 2197 
 

96735 137000 
 

105836 -23 239277 75 196977 196190 43 

Eskbank 5230 2628 2588 
 

133121 228000 
 

261050 14 312784 37 242701 240717 6 

Shawfair 1323 320 324 
 

16853 21000 
 

123720 489 106627 408 65467 64979 209 
               

Totals         909412 1361000   772434 -43 2015967 48 1410350 1402525 3 

Notes: ^Trip data read from graphs provided in the Borders Railway Year 1 Evaluation report, therefore figures are only indicative of actual values 
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The methodology was next applied to forecast demand for the seven stations 

that were built as part of the new Borders Railway in Scotland, which opened 

in September 2015 (see Figure 3). The results are shown in Table 6 and 

summarised in Figure 4, along with the final business case forecast for the first 

12 months, and actual usage in 2016/17. The predictor variables for each of the 

stations are summarised in Table 7.  

Figure 3: The Borders Railway. Source: Wikipedia 

 

Table 7: Predictor variables for Borders Railway (new stations only) 

Station Workplace 
pop. (1 min) 

Daily service 
freq. 

Car park 
spaces 

Nearest Cat 
A-D station 

Terminus 
station 

Tweedbank 1120 66 235 54.89 1 

Galashiels 3746 66 0 50.62 0 

Stow 718 47 33 39.08 0 

Gorebridge 2330 66 73 16.58 0 

Newtonrange 1965 66 56 13.17 0 

Eskbank 819 66 248 11.39 0 

Shawfair 0 66 59 10.16 0 

 

The results show that model TE4 (probabilistic catchments) has performed 

reasonably well across the stations, and in all but one case has produced more 

accurate forecasts than model TE2 (simple catchments). The forecasts for 

three of the stations, Tweedbank, Stow and Eskbank, are within 10% of actual 

trips. This is substantially better than the performance of model TE2. Model TE4 

has noticeably corrected the large over-prediction for Tweedbank station, 

reducing it from +70% to +2% of actual trips. However, TE4 has under-predicted 
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Galashiels by 57%, performing worse than TE2 (-41%). Unlike the other new 

stations, Galashiels has no station car park. It is possible that the station choice 

model is penalising Galashiels excessively, attributing higher probabilities to 

Tweedbank and Stow than justified for some postcodes. The under-forecasting 

of Galashiels by all the models may also be the consequence of no car parking 

spaces appearing in the model. This could be due to the trip-end model 

performing less well in these circumstances, or it may indicate that alternative 

parking opportunities are available for station users. Model TE4 has over-

forecast Gorebridge (+120%), although this is rather better than TE2 (+174%). 

There is anecdotal evidence that competition from local bus services might be 

suppressing demand at Gorebridge, something that the models would not be 

sensitive to. Considering all seven stations together, model TE4 predicts a total 

of 1.40 million trips, which compares to 1.36 million actual trips in 2016/17. 

Despite some shortcomings, it is particularly encouraging that the models have 

performed substantially better than the business-case projections for the three 

Scottish Borders stations (Tweedbank, Galashiels and Stow).   

Figure 4: Comparison of demand forecasts and actual trips in 2016/17 for the new stations on 
the Borders Railway 

 

5. CONCLUSIONS AND FUTURE WORK 

This research has shown that it is possible, through the use of a station choice 

component, to incorporate more realistic representations of station catchments 

into the type of aggregate demand model that is commonly used in the UK to 

forecast demand for new local stations. The trip-end models that define 

probability-based catchments perform better than those with traditional 

deterministic catchments, both in terms of measures of model performance, 

and their predictive ability when applied to real-world forecasting scenarios. 
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Although the models that have been developed need to be validated more 

extensively, this research has important policy implications. The findings 

suggest that it is possible to develop a robust and transferable national 

forecasting model for new local railway stations. Such a model, which could be 

re-calibrated and refined on a regular basis, may be preferable in some 

circumstances to models that are developed on an ad hoc basis when a local 

need arises. A national model would also be a useful comparator tool that could 

help assess the reliability of forecasts produced by locally developed models.  

Previous work has established that station choice models which include 

predictor variables relating to the rail leg, such as journey time or number of 

transfers, perform considerably better as predictive models than those used in 

this research (Young and Blainey, 2017a). Such station choice models are 

suitable for incorporating into flow models, which forecast trips between origin-

destination station pairs. The calibration of flow models with these enhanced 

probabilistic catchments is therefore an important avenue for future research. 

Further work is also needed to extend the model application methodology to 

enable the impact of passenger abstraction from existing stations to be 

assessed. 
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NOTES 

1 This analysis is based on the survey data described in Section 2. 

2 In the UK a unit postcode represents the most detailed spatial unit available 

from postcode data. For small postal users (i.e. not business addresses), a unit 

postcode typically represents around 15 addresses, though it is possible to 

contain up to 100 addresses in densely populated areas. 

3 Flow models forecast trips from each origin station to each destination station 

and additionally take account of the train leg and characteristics of the 

destination. 

4 There are approximately 3000 addresses in a postcode sector. 

5 Many of these stations are served by so-called ‘parliamentary trains’, a bare 

minimum service to avoid invoking the costly formal process of closing a station. 

 

 

 


