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A rail renaissance
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Rail passenger journeys 1950 - 2015/16 (ORR)

1982 = 630 

2015-16 = 1687

57% growth in last 10 
years



New stations
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• Increasing interest in using rail to meet transport needs or 
drive economic growth

• Need accurate demand forecasts
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Demand models – defining catchments

• Trip end and flow models

• Must define a catchment first:

– circular (buffer) around station

– nearest station – zone based

• Choice of station is deterministic

• Catchments are discrete, none 
overlapping
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Catchments in reality

• 2km circular catchments account for 
57% of trips, 0-20% for some stations 
(Blainey & Evens, 2011)

• 53% of trip ends located within nearest 
station zone-based catchments (Blainey 
& Preston, 2010)

• 47% of passengers in the Netherlands 
do not use their nearest station 
(Debrezion et al., 2007)
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Catchments in reality

• Catchments are not discrete. They 
overlap and stations compete

• Catchments vary by access mode, 
station type and destination

• Station choice is more complex than 
definitions allow



9

Probability-based catchments

• For each zone calculate the 
probability of each competing 
station being chosen

• Allocate zonal population to 
each station based on the 
probabilities

• Develop transferable station 
choice models



Data 
considerations



Data – passenger surveys
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• Welsh Government (WG) 2015

– South East Wales (Cardiff, Newport, Valleys) and 
Swansea

– 7,ooo observations

• LATIS, Transport Scotland 2014 & 2015

– All of Scotland, concentrated in Central Belt

– 50,000 observations



Data – cleaning and validation
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• Missing unit-level postcodes

– address matching and location estimation

– OS AddressBase (28 million addresses)

• Automated trip validation

– excessive access/egress legs

– illogical trips (reversed or back-track)
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Data sources:
1. OpenTripPlanner (bespoke route planner - OpenStreetMap/Transit schedules)
2. NRE Knowledgebase XML Feed
3. BR Fares website
4. Derived from data
5. GTFS feed for GB rail services

Data – explanatory variables
Access journey Origin station 

facilities/services
Train leg

• Drive distance1

• Drive time1

• Walk time1

• Bus time1

• Nearest station 
(y/n)4

• Difference in 
bearing4

• Staffing level2

• Service frequency5

• CCTV (y/n)2

• Car parking spaces2

• Free car park (y/n)2

• Toilets/Ticket
machine2

• Total duration1

• On-train time1

• Waiting time1

• No. of transfers1

• Fare3



Data - Automatic processing framework
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Young, M. (2016). An automated framework to derive model variables from open 

transport data using R, PostgreSQL and OpenTripPlanner. Paper presented at 24th 

GIS Research UK Conference.



Models 
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Model details

• Discrete choice models – RUM theory

• Choice set varies by individual, defined for each origin

– 10 nearest stations by drive distance plus nearest 
major station (97% of observed choice)

• Multinomial logit (MNL) and random parameter (mixed) 
logit (RPL)

• Models suitable for trip-end and flow demand models
No. of choice 
situations

No. of cases Av. choice set 
size

LATIS 9,367 97,838 10.44

WG 5,680 59,833 10.53
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Model results – MNL

Model Significant variables LogLik Adj R2

LATIS TE17 • Nearest station
• Mode-specific access time
• Staffing level
• Train frequency
• CCTV
• Parking space (car mode)
• Free car park (car mode)
• Ticket machine
• Toilets

-6764 .69

WG TE17 As above -3733 .72

LATIS FM2 TE17 plus:
• On-train time
• Waiting time
• Bearing difference

-5243 .76

WG FM2 As above -3247 .76
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Model results – RPL

Model Specified as random 
parameters

Significant non-random 
parameters

LogLik Adj R2

LATIS 
RPL2

• Mode-specific access time • Nearest station
• Staffing level
• Train frequency
• CCTV
• Parking space (car mode)
• Ticket machine
• Toilets

-6553 .70

WG RPL2 • Access time (walk, bus and 
car modes)

• Nearest station
• Cycle access time (cycle mode)
• Staffing level
• Train frequency
• CCTV
• Parking space (car mode)
• Free car park (car mode)
• Ticket machine

-3649 .73

• Initial models determined that access time parameters had 
significant standard deviation (using a log normal 
distribution)



Model appraisal



Predictive performance
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• For each station:

– difference between 
number of times actually 
chosen and sum of 
probabilities from the 
model

• For entire model

– absolute difference as % 
of total choice situations 
(lower is better)

Model Predictive
performance (abs. 
diff. as % of total 
choice situations)

LATIS WG

Base model (prob. 
nearest = 1)

50.91 40.99

TE17 23.53 27.35

FM4 14.61 22.35

RPL2 (TE) 23.58 25.85

RPL4 (FLOW) n/a 21.13



Predictive performance
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LATIS - base model (Pr. Nearest = 1)



Predictive performance
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LATIS – FM1 model



Predictive performance
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LATIS - base model (Pr. nearest = 1) LATIS – FM1 model



Transferability 

24

Parameter



Transferability
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Model Predictive performance

LATIS WG

Base model (prob. nearest = 1) 50.91 40.99

TE17 23.53 27.35

FM4 14.61 22.35

FM2 (model calibrated on other dataset) 20.16 34.80



Transferability
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Model Predictive performance

LATIS WG

Base model (prob. nearest = 1) 50.91 40.99

TE17 23.53 27.35

FM4 14.61 22.35

FM2 (model calibrated on other dataset) 20.16 34.80



Conclusions &
future work



Conclusions

• Station choice models calibrated using two independent 
datasets

• Models predict station choice substantially better than a 
base model that assumes nearest station is always chosen

• Reasonable correspondence in parameter estimates across 
the two datasets  - problematic variables (e.g. CCTV)

• RPL model probably not worth the added complexity, but 
need to address proportional substitution behaviour of the 
MNL model
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Future work & industry implications

• Main focus to integrate station choice models into trip end 
and flow rail demand models. When completed this should:

– improve the models used to assess proposals for new 
railway stations

– enable better forecasting of the effects of changing 
service patterns (e.g. open access services); and 

– provide a methodology that can be incorporated into the 
industry Passenger Demand Forecasting Handbook
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