

Defining probability-based rail station catchments for demand modelling.

Marcus Young PhD student, Transportation Research Group 7 January 2016

Outline

- Research background
- Developing a station choice model
- Model results
- Generating probability-based catchments
- Conclusions and further work

Research background

Rail renaissance

New stations

- Increasing interest in using rail to meet transport needs or drive economic growth
- Need accurate demand forecasts

Demand models – defining catchments

- Trip rate, trip end and flow models
- Must define a catchment first:
 - circular (buffer) around station
 - nearest station zone based
- Choice of station is deterministic
- Catchments are discrete, none overlapping

Catchments in reality

- 2km circular catchments account for 57% of observed trips, 0-20% for some stations (Blainey and Evens, 2011)
- 53% of trip ends located within nearest station zone-based catchments (Blainey and Preston, 2010)
- 47% of passengers in the Netherlands do not use their nearest station (Debrezion et al., 2007)

Catchments in reality

- Catchments are not discrete. They overlap and stations compete
- Catchments vary by access mode, station type and destination
- Station choice is not homogenous within zones
- Station choice more complex than definitions allow

Alternative – probability-based catchment

- For each zone calculate the probability of each competing station being chosen
- Allocate zonal population to each station based on the probabilities
- Need a station choice model

Developing a station choice model

Discrete choice models

• Individual chooses the alternative that maximises their utility

Utility (U) = measured utility (V) + unobserved utility (ϵ)

• Measure utility: attributes and estimated parameters, e.g.

 $V = \alpha Freq + \beta Dist + \gamma Time$

• Calculate the probability of each alternative being chosen

Factor	Change	Expected affect on utility
Frequency of service	^	^
Car parking spaces	1	1
Fare	1	\checkmark
Access distance	1	\checkmark
Interchanges	1	\checkmark
Journey time	1	\checkmark

Data requirements

- Observed choice data on-train survey Cardiff Central to Rhymney line, 284 usable observations
- Attribute data

individual	chosen	alternative	cardist	t rank	cartime	cctv	choice	nearest	unstaffed	partTime	
1	9100CRPHLY	9100TYGLAS	7.65	10	16.3	1	0	0	1	0	
1	9100CRPHLY	9100RHIWBNA	7.36	9	15.05	1	0	0	1	0	
1	9100CRPHLY	9100LLISHEN	7.08	8	16.93	1	0	0	1	0	
1	9100CRPHLY	9100BCHGRV	6.83	7	13.97	0	0	0	1	0	
1	9100CRPHLY	9100TAFFSWL	6.46	6	13.95	1	0	0	0	1	Choice
1	9100CRPHLY	9100LTHH	5.73	5	11.77	1	0	0	1	0	Set
1	9100CRPHLY	9100LLBRDCH	4.83	4	9.38	0	0	0	1	0	
1	9100CRPHLY	9100ERGNCHP	2.81	3	7.93	0	0	0	1	0	
1	9100CRPHLY	9100ABER	2.06	2	5.87	1	0	0	0	1	
1	9100CRPHLY	9100CRPHLY	1.06	1	3.02	1	1	1	0	1	

Data – OpenTripPlanner

- Open source multi-modal route planner with API
- OpenStreetMap for street and path routing
- GTFS feeds for train and bus routing
- API wrapper written in R

Data – explanatory variables

Access journey	Origin station facilities	Train leg
 Drive distance¹ Drive time¹ Walk time¹ Bus time¹ Nearest station (y/n)⁴ 	 CCTV (y/n)² Car parking spaces² Staffing level² Unstaffed Part-time Full-time 	 Journey duration¹ No. of transfers¹ Fare³ Difference between actual and desired departure time¹

Data sources:

- 1. OpenTripPlanner
- 2. NRE Knowledgebase XML Feed
- 3. BR Fares
- 4. Derived from data

Model details

- Choice set varies by individual, defined for each origin unit postcode
 - 10 nearest stations by drive distance (99% of observed choice)
 - threshold based bus route available; maximum walk time (45 minutes)
- Multinomial logit
- Calibrated using R package, mclogit

Model results

Results – basic choice sets

	1	2	3	5	10
Drive distance	-1.03***	-0.93***	-1.10***	-0.82***	-0.81***
Staffing (PT)		-3.42***	-2.16***	-2.22***	-2.59***
Staffing (None)		-4.48***	-2.72***	-2.77***	-2.71***
Train time			-0.21***	-0.21***	-0.20***
Nearest station				0.98***	0.99***
CCTV					1.43***
logLik	-348.81	-248.57	-212.34	-203.25	-196.38
Adj R ²	0.46	0.62	0.67	0.69	0.70

Results – threshold-based choice sets

	11	12	
Drive distance	-0.60***		
Access time (car driver)		-0.29***	
Access time (car passenger)		-0.32***	Access mode
Access time (bus)		-0.18***	parameters
Access time (walk)		-0.13***	
Staffing (PT)	-2.71***	-3.00***	
Staffing (None)	2.62***	-3.00***	
Train time	-0.21***	-0.20***	
Nearest station	1.09***	0.78***	
CCTV	1.68***	1.8***	
logLik	-177.59	-158.89	
Adj R ²	0.61	0.65	

Generating probability-based catchments

Generate a probability-based catchment

- Find 10 nearest stations by drive to distance for each postcode
- Generate attribute values (for specific destination)
- Calculate utility of each station using model 10.

 $V = (-0.81 \times D) + (-2.6 \times Spt) + (-2.7 \times Sno) + (-0.2 \times T) + (0.99 \times Ns) + (1.4 \times C)$

• Calculate probability of each station being chosen

Example – Ystrad Mynach

Probability-based catchment – to Cardiff Central 2km radial and nearest station catchments

Conclusions and further work

Conclusions

- It is possible to calibrate a relatively simple station choice model that fits the observed data well
- The model can be used to generate probability-based station catchments that are a realistic representation of observed catchments
- The probability-based catchments perform better than deterministic station catchments

Future work

- Apply methods to larger surveys
- Develop more sophisticated models multinomial logit models suffer from proportional substitution behaviour
- Need to ensure a realistic representation of abstraction from existing stations this effect could undermine the business case for a new station
- Incorporate probability-based catchments into the rail demand models